Vol. 118
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-18
A Novel Surface Wave Diplexer Based on Tensor Impedance Surfaces
By
Progress In Electromagnetics Research C, Vol. 118, 1-10, 2022
Abstract
In this paper, a new Surface Wave (SW) diplexer in frequency bands of 11.6 GHz and 19.3 GHz is presented based on the frequency variations of the refractive angle when an SW enters from a Scalar Impedance Sheet (SIS) to a Tensor Impedance Sheet (TIS). In this structure, a SIS has been placed alongside a TIS, and using three launchers, SW is excited and received on them. To achieve an SW diplexer, the structure is designed in a way that the refractive angle changes in the expected range when SW enters from SIS to TIS. Finally, the proposed structure is fabricated and measured by printed circuit technology. The measurement results at 11.6 GHz and 19.3 GHz show that this structure has 3.6 dB and 4.1 dB insertion losses and 33.5 dB and 37 dB isolations in the two bands, respectively. These measurements are in good agreement with mathematical modelling and simulations.
Citation
Mojtaba Mighani , "A Novel Surface Wave Diplexer Based on Tensor Impedance Surfaces," Progress In Electromagnetics Research C, Vol. 118, 1-10, 2022.
doi:10.2528/PIERC21120206
http://www.jpier.org/PIERC/pier.php?paper=21120206
References

1. Matthaei, G. L., E. M. Jones, and L. Young, Microwave Filters, Impedance-matching Networks, and Coupling Structures, McGraw-Hill, New York, 1964.

2. Bushore, K. R. and W. L. Teeter, "A variable-ratio microwave power divider and multiplexer," IRE Transactions on Microwave Theory and Techniques, Vol. 5, No. 4, 227-229, Oct. 1957, doi: 10.1109/TMTT.1957.1125154.
doi:10.1109/TMTT.1957.1125154

3. Cristal, E. G. and G. L. Matthaei, "A technique for the design of multiplexers having contiguous channels," IEEE Transactions on Microwave Theory and Techniques, Vol. 12, No. 1, 88-93, Jan. 1964, doi: 10.1109/TMTT.1964.1125756.
doi:10.1109/TMTT.1964.1125756

4. Ricardi, L. J., "A diplexer using hybrid junctions," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 8, 364-371, Aug. 1966, doi: 10.1109/TMTT.1966.1126276.
doi:10.1109/TMTT.1966.1126276

5. Wang, R. and J. Xu, "Synthesis and design of microwave diplexers with a common resonator junction," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-4, Shenzhen, China, May 5-8, 2012, doi: 10.1109/ICMMT.2012.6230019.

6. Sorkherizi, M. S., et al., "Design of integrated diplexer-power divider," IEEE MTT-S International Microwave Symposium (IMS), 1-3, San Francisco, CA, USA, May 22-27, 2016, doi: 10.1109/MWSYM.2016.7540124.

7. Song, K., et al., "Balanced diplexer based on substrate integrated waveguide dual-mode resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 12, 5279-5287, Dec. 2020, doi: 10.1109/TMTT.2020.3015968.
doi:10.1109/TMTT.2020.3030789

8. Xu, J. X., et al., "Switchable diplexer based on coupling control," IEEE Transactions on Cir- cuits and Systems II: Express Briefs, Vol. 68, No. 1, 166-170, Jan. 2021, doi: 10.1109/TC-SII.2020.3003913.
doi:10.1109/TCSII.2020.3003913

9. Sieganschin, A., T. Jaschke, and A. F. Jacob, "A compact diplexer for circularly polarized 20/30 GHz SIW-antennas," IEEE/MTT-S International Microwave Symposium (IMS), 599-602, Los Angeles, CA, USA, Aug. 4{6, 2020, doi: 10.1109/IMS30576.2020.9223900.

10. Yang, L., et al., "Input-re ectionless low-pass lter on multilayered diplexer-based topology," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 10, 945-948, Oct. 2020, doi: 10.1109/LMWC.2020.3017252.
doi:10.1109/LMWC.2020.3017252

11. Xue, Y. M., et al., "Wideband diplexer with narrow channel spacing using hybrid bandpass- bandstop structures," IEEE Access, Vol. 8, 137783-137788, Jul. 27, 2020, doi: 10.1109/AC-CESS.2020.3012348.

12. Macchiarella, G., et al., "A synthesis-based design procedure for waveguide duplexers using a stepped E-plane bifurcated junction," IEEE/MTT-S International Microwave Symposium (IMS), 452-455, Los Angeles, CA, USA, Aug. 4-6, 2020, doi: 10.1109/IMS30576.2020.9223923.

13. Garcia, J. O., et al., "Waveguide quadruplet diplexer for multi-beam satellite applications," IEEE Access, Vol. 8, 110116-110128, Jun. 16, 2020, DOI: 10.1109/ACCESS.2020.3002818.

14. Mighani, M. and G. Dadashzadeh, "Analytical study and experimental verification of the refraction angle as a function of frequency due to surface waves incident onto a tensor impedance sheet," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4642-4649, Jul. 2019, doi: 10.1109/TAP.2019.2905779.
doi:10.1109/TAP.2019.2905779

15. Mighani, M. and G. Dadashzadeh, "Analytical study and experimental verification of the surface wave loss on a tensor impedance surface," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2879-2885, Dec. 2019, doi: 10.1002/mop.31983.
doi:10.1002/mop.31983

16. Mighani, M. and G. Dadashzadeh, "Analytical study of surface wave multiple refraction in boundary of a scalar impedance surface with a tensor impedance surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, 1-12, Jan. 2020, doi: 10.1002/mmce.22139.
doi:10.1002/mmce.22139

17. Sievenpiper, D., et al., "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999, doi: 10.1109/22.798001.
doi:10.1109/22.798001

18. Podilchak, S. K., et al., "Surface-wave launchers for beam steering and application to planar leaky-wave antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 355-363, Feb. 2009, doi: 10.1109/TAP.2008.2011248.
doi:10.1109/TAP.2008.2011248

19. Podilchak, S. K., et al., "Planar surface-wave sources and metallic grating lenses for controlled guided-wave propagation," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 371-374, Jan. 2009, doi: 10.1109/LAWP.2009.2013488.
doi:10.1109/LAWP.2009.2013488

20. Mesa, F., C. di Nallo, and D. R. Jackson, "The theory of surface-wave and space-wave leaky-mode excitation on microstrip lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 2, 207-215, Feb. 1999, doi: 10.1109/22.744296.
doi:10.1109/22.744296

21. Podilchak, S. K., et al., "Planar leaky-wave antenna designs offering conical-sector beam scanning and broadside radiation using surface-wave launchers," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 155-158, Feb. 2008, doi: 10.1109/LAWP.2008.919326.
doi:10.1109/LAWP.2008.919326

22. Bosiljevac, M., et al., "Non-uniform metasurface Luneburg lens antenna design," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4065-4073, Sep. 2012, doi: 10.1109/TAP.2012.2207047.
doi:10.1109/TAP.2012.2207047

23. Mahmoud, S. F., et al., "Theoretical considerations in the optimization of surface waves on a planar structure," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2057-2063, Aug. 2004, doi: 10.1109/TAP.2004.832498.
doi:10.1109/TAP.2004.832498

24. Hammad, H. F., et al., "Uni-planar CPW-fed slot launchers for efficient TM0 surface-wave excitation," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1234-1240, Apr. 2003, doi: 10.1109/TMTT.2003.809668.
doi:10.1109/TMTT.2003.809668