Vol. 119
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-08
Compact Negative-Permittivity Microstrip Patch Antenna for End-Fire Radiation
By
Progress In Electromagnetics Research C, Vol. 119, 17-30, 2022
Abstract
We propose a compact microstrip patch antenna that uses a negative permittivity substrate to achieve an end-fire radiation pattern. The antenna is designed to operate at X-band frequencies with a patch footprint of 0.9λ × 0.05λ and a thickness of λ/20. We show that loading a narrow patch with a negative permittivity substrate introduces an effective shunt inductance that resonates with the strong fringing capacitance of the patch. At resonance, the electric field is vertically polarized and approximately uniform across the patch, producing transverse nulls that improve the directivity of the antenna. The negative permittivity substrate is implemented using a thin-wire effective medium with four vias spread across the patch. The antenna is matched to 50 Ω using a quarter-wavelength transformer. The fabricated antenna operates at 10.8 GHz with a peak return loss of 30 dB and a bi-directional directivity of 10.7 dBi. The antenna has a 10-dB impedance bandwidth of 3.8% and radiates with a simulated efficiency of 93%.
Citation
Masoud Ahmadi Bruce Veidt Loïc Markley , "Compact Negative-Permittivity Microstrip Patch Antenna for End-Fire Radiation," Progress In Electromagnetics Research C, Vol. 119, 17-30, 2022.
doi:10.2528/PIERC21122301
http://www.jpier.org/PIERC/pier.php?paper=21122301
References

1. Ye, M., X. Li, and Q. Chu, "Single-layer single-fed endfire antenna with bidirectional circularly polarized radiation of the same sense," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 621-624, 2017.

2. Arai, H. and K. Kohzu, "A bidirectional notch antenna," IEEE Antennas and Propagation Society International Symposium, 1996 Digest, Vol. 1, 42-45, Jul. 1996.

3. Rohani, B., K. Takahashi, H. Arai, Y. Kimura, and T. Ihara, "Improving channel capacity in indoor 4×4 MIMO base station utilizing small bidirectional antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 393-400, 2018.

4. Zhao, Y., Z. Zhang, K. Wei, and Z. Feng, "A dual circularly polarized waveguide antenna with bidirectional radiations of the same sense," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 480-484, 2014.

5. Viezbicke, P. P., "Yagi antenna design," Final Report National Bureau of Standards, Boulder, CO. Time and Frequency Div., 1976.

6. Jia, T. and X. Li, "A compact stacked bidirectional antenna for dual-polarized WLAN applications," Progress In Electromagnetics Research C, Vol. 44, 95-108, 2013.

7. Batgerel, A., J. I. Choi, and S. Y. Eom, "High-gain bidirectional MDAS antenna design excited by stacked-microstrip dipole," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1412-1422, 2012.

8. Batgerel, A., S. Y. Eom, L. Minz, J. M. Kim, and J. I. Choi, "High gain bidirectional microstrip dipole antenna," 2011 IEEE International Conference on Ultra-Wideband (ICUWB), 21-24, Sep. 2011.

9. Guo, H. and W. Geyi, "Design of bidirectional antenna array with adjustable endfire gains," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1656-1660, Aug. 2019.

10. Liu, L., Z. Zhang, Z. Tian, and Z. Feng, "A bidirectional endfire array with compact antenna elements for coal mine/tunnel communication," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 342-345, 2012.

11. Liu, W., Z. Zhang, Z. Tian, and Z. Feng, "A bidirectional high-gain cascaded ring antenna for communication in coal mine," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 761-764, 2013.

12. Tian, D., R. Xu, G. Peng, J. Li, Z. Xu, A. Zhang, and Y. Ren, "Low-profile high-efficiency bidirectional endfire antenna based on spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 837-840, 2018.

13. Liu, W., Y. Li, Z. Zhang, and Z. Feng, "A bidirectional array of the same left-handed circular polarization using a special substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1543-1546, 2013.

14. Cho, K. and T. Hori, "Bidirectional rod antenna composed of narrow patches," Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Vol. 1, 174-177, Jun. 1994.

15. Liu, F., Z. Zhang, W. Chen, Z. Feng, and M. F. Iskander, "An endfire beam-switchable antenna array used in vehicular environment," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 195-198, 2010.

16. Wang, R., B. Wang, G. Gao, X. Ding, and Z. Wang, "Low-profile pattern-reconfigurable vertically polarized endfire antenna with magnetic-current radiators," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 829-832, May 2018.

17. Arai, H., K. Kohzu, T. Mukaiyama, and Y. Ebine, "Bi-directional notch antenna with parasitic elements for tunnel booster system," IEEE Antennas and Propagation Society International Symposium, 1997 Digest, Vol. 4, 2218-2221, Jul. 1997.

18. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, 2001.

19. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, New York, 2016.

20. Ahmadi, M., "Low-profile microstrip end-fire antennas based on metamaterial substrates,", Master's thesis, University of British Columbia, 2018.

21. Bruneau, A., M. Bruneau, P. Herzog, and J. Kergomard, "Boundary layer attenuation of higher order modes in waveguides," Journal of Sound and Vibration, Vol. 119, No. 1, 15-27, 1987.

22. Lin, Y.-D., J.-W. Sheen, and C.-K. Tzuang, "Analysis and design of feeding structures for microstrip leaky wave antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 9, 1540-1547, 1996.

23. Qian, Y., B. Chang, T. Itoh, K. Chen, and C. Tzuang, "High efficiency and broadband excitation of leaky mode in microstrip structures," 1999 IEEE MTT-S International Microwave Symposium Digest, Vol. 4, 1419-1422, IEEE, 1999.

24. Taheri, M. M. S., A. Abdipour, S. Zhang, and G. F. Pedersen, "Integrated millimeter-wave wideband end-fire 5G beam steerable array and low-frequency 4G LTE antenna in mobile terminals," IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, 4042-4046, 2019.

25. Hu, Z., Z. Shen, W. Wu, and J. Lu, "Low-profile top-hat monopole Yagi antenna for end-fire radiation," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 2851-2857, Jul. 2015.

26. Li, M., S. Xiao, J. Xiong, and B. Wang, "Horizontal dipole located close to ground plane with bidirectional endfire radiation," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1144-1147, 2014.

27. Li, M., Y. Zhang, and M. Tang, "Design of a compact, wideband, bidirectional antenna using index-gradient patches," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 7, 1218-1222, Jul. 2018.

28. Nakano, H., Low-Profile Natural and Metamaterial Antennas: Analysis Methods and Applications, John Wiley & Sons, New York, 2016.

29. Eleftheriades, G. V. and N. Engheta, "Metamaterials: Fundamentals and applications in the microwave and optical regimes," Proceedings of the IEEE, Vol. 99, No. 10, 2011.

30. Bilotti, F., A. Alù, and L. Vegni, "Design of miniaturized metamaterial patch antennas with μ-negative loading," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1640-1647, 2008.

31. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "Radiation properties of sub-wavelength resonant patch antennas filled with a pair of DPS, DNG, and/or SNG metamaterial blocks," IEEE Antennas and Propagation Society International Symposium (APS/URSI), Washington, DC, 2005.

32. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 13-25, Jan. 2007.

33. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3710-3712, 2007.

34. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, New York, 2006.

35. Hammerstad, E. O., "Equations for microstrip circuit design," 5th European Microwave Conference, 1975, 268-272, IEEE, 1975.

36. Edwards, T. C. and M. B. Steer, Foundations for Microstrip Circuit Design, 4th Ed., John Wiley & Sons, New York, 2016.

37., , COMSOL Multiphysics v.5.5, www.comsol.com, COMSOL AB, Stockholm, Sweden, 2018.

38. Pendry, J. B., A. Holden, D. Robbins, and W. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, No. 22, 4785, 1998.

39. Wu, Q., F.-Y. Meng, M.-F. Wu, J. Wu, and L.-W. Li, "Research on the negative permittivity effect of the thin wires array in left-handed material by transmission line theory," Progress In Electromagnetics Research Symposium 2005, 196-200, Hangzhou, China, Aug. 22-26, 2005.

40. Huang, J. and A. C. Densmore, "Microstrip Yagi array antenna for mobile satellite vehicle application," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 7, 1024-1030, Jul. 1991.

41. Bhattacharyya, A. K., "Effects of finite ground plane on the radiation characteristics of a circular patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 2, 152-159, 1990.