Vol. 118
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-02-19
Vernier Effect Based Temperature Sensor Revealed Ultra-Sensitivity with High-Detection Resolution
By
Progress In Electromagnetics Research C, Vol. 118, 147-158, 2022
Abstract
In this study, a Vernier effect based temperature sensor with ultra-sensitivity and high-resolution detection is presented. The structure of the proposed temperature sensor is based on dual cascaded Fabry-Perot interferometers (FPIs), which consists of polymer and air cavity FPIs. The polymer cavity works as the sensing part, whereas the air cavity works as the reference part. The slight difference between the Free Spectral Range (FSR) of the sensing and the reference FPIs can establish the Vernier effect, which improves the sensitivity of the cascaded FPIs structure compared to the single FPI structure. The experimental results show that the proposed structure can provide the ultra-high temperature sensitivity of 67.69 nm/˚C that is 20 times higher than the single FPI, which is 3.36 nm/˚C in the testing range of 26˚C-28˚C. In addition, the structure is simple to fabricate, compact, inexpensive, along with ultra-sensitivity and high-resolution. Therefore, the proposed sensor is a suitable choice for the applications demanding high resolution temperature detection in different fields of engineering and science.
Citation
Lashari Ghulam Abbas Farhan Mumtaz Yutang Dai Rashda Parveen Muhammad Aqueel Ashraf , "Vernier Effect Based Temperature Sensor Revealed Ultra-Sensitivity with High-Detection Resolution," Progress In Electromagnetics Research C, Vol. 118, 147-158, 2022.
doi:10.2528/PIERC21122404
http://www.jpier.org/PIERC/pier.php?paper=21122404
References

1. Mumtaz, F., et al., "A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer," IEEE Sensors Journal, Vol. 20, No. 13, 7074-7081, 2020.
doi:10.1109/JSEN.2020.2978533

2. Cheng, P., et al., "Refractive index interferometer based on SMF-MMF-TMCF-SMF structure with low temperature sensitivity," Optical Fiber Technology, Vol. 57, 102233, 2020.
doi:10.1016/j.yofte.2020.102233

3. Mumtaz, F., Y. Dai, and M. A. Ashraf, "Inter-cross de-modulated refractive index and temperature sensor by an etched Multi-core fiber of a MZI structure," Journal of Lightwave Technology, Vol. 38, No. 24, 6948-6953, 2020.
doi:10.1109/JLT.2020.3014857

4. Mumtaz, F., H. Lin, Y. Dai, W. Hu, M. A. Ashraf, L. G. Abbas, S. Cheng, and P. Cheng, "Simultaneous measurement of temperature and strain using multi-core fiber within-line cascaded symmetrical ellipsoidal fiber balls-based Mach-Zehnder interferometer structure," Progress In Electromagnetics Research C, Vol. 112, 21-34, 2021.
doi:10.2528/PIERC21021002

5. Frazao, O., et al., "Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber," Applied Optics, Vol. 47, No. 27, 4841-4848, 2008.
doi:10.1364/AO.47.004841

6. Bai, Y., Y. Miao, H. Zhang, and J. Yao, "Simultaneous measurement of temperature and relative humidity based on a micro ber sagnac loop and MoS2," Journal of Lightwave Technology, Vol. 38, No. 4, 840-845, 2020.
doi:10.1109/JLT.2019.2947644

7. Cao, Y., H. Zhang, Y. Miao, Z. Ma, and B. Li, "Simultaneous measurement of temperature and refractive index based on micro ber Bragg Grating in Sagnac loop," Optical Fiber Technology, Vol. 47, 147-151, 2019.
doi:10.1016/j.yofte.2018.11.028

8. Wang, G., Y. Lu, X. Yang, L. Duan, and J. Yao, "Square-lattice alcohol- lled photonic crystal fiber temperature sensor based on a Sagnac interferometer," Applied Optics, Vol. 58, No. 8, 2132-2136, 2019.
doi:10.1364/AO.58.002132

9. Liu, Y., et al., "Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure," Optics Communications, Vol. 443, 166-171, 2019.
doi:10.1016/j.optcom.2019.03.034

10. Liu, Y., et al., "Hollow-core fiber-based all-fiber FPI sensor for simultaneous measurement of air pressure and temperature," IEEE Sensors Journal, Vol. 19, No. 23, 11236-11241, 2019.
doi:10.1109/JSEN.2019.2934738

11. Nan, J., D. Zhang, X. Wen, M. Li, H. Lv, and K. Su, "Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length," IEEE Sensors Journal, Vol. 20, No. 10, 5270-5276, 2020.
doi:10.1109/JSEN.2020.2969431

12. Abbas, L. G., F. Mumtaz, Y. Dai, A. Zhou, W. Hu, and M. A. Ashraf, "Highly sensitive polymer based Fabry-Perot interferometer for temperature sensing," Progress In Electromagnetics Research Letters, Vol. 97, 87-94, 2021.
doi:10.2528/PIERL21030702

13. Del Carmen Alonso-Murias, M., J. S. Velazquez-Gonzalez, and D. Monzon-Hernandez, "SPR fiber tip sensor for the simultaneous measurement of refractive index, temperature, and level of a liquid," Journal of Lightwave Technology, Vol. 37, No. 18, 4808-4814, 2019.
doi:10.1109/JLT.2019.2921302

14. Han, B., et al., "Simultaneous measurement of temperature and strain based on dual SPR effect in PCF," Optics Laser Technology, Vol. 113, 46-51, 2019.
doi:10.1016/j.optlastec.2018.12.010

15. Velazquez-Gonzalez, J. S., D. Monzon-Hernandez, D. Moreno-Hernandez, F. Martnez-Pinon, and I. Hernandez-Romano, "Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor," Sensors Actuators B: Chemical, Vol. 242, 912-920, 2017.
doi:10.1016/j.snb.2016.09.164

16. Zhang, R., S. Pu, and X. Li, "Gold-film-thickness dependent SPR refractive index and temperature sensing with hetero-core optical fiber structure," Sensors, Vol. 19, No. 19, 4345, 2019.
doi:10.3390/s19194345

17. Lu, Y., M. Wang, C. Hao, Z. Zhao, and J. Yao, "Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid," IEEE Photonics Journal, Vol. 6, No. 3, 1-7, 2014.

18. Xu, H., M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip- based photonic temperature sensor using ring resonator structures," Optics Express, Vol. 22, No. 3, 3098-3104, 2014.
doi:10.1364/OE.22.003098

19. Yu, J., S. Xu, Y. Jiang, H. Chen, and W. Feng, "Multi-parameter sensor based on the fiber Bragg grating combined with triangular-lattice four-core fiber," Optik, Vol. 208, 164094, 2020.
doi:10.1016/j.ijleo.2019.164094

20. Yan, L. S., A. Yi, W. Pan, and B. Luo, "A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser," IEEE Photonics Technology Letters, Vol. 22, No. 18, 1391-1393, 2010.
doi:10.1109/LPT.2010.2060478

21. Rao, Y.-J., "In-fibre Bragg grating sensors," Measurement Science Technology, Vol. 8, No. 4, 355, 1997.
doi:10.1088/0957-0233/8/4/002

22. Zheng, Z.-M., Y.-S. Yu, X.-Y. Zhang, Q. Guo, and H.-B. Sun, "Femtosecond laser inscribed small- period long-period fiber gratings with dual-parameter sensing," IEEE Sensors Journal, Vol. 18, No. 3, 1100-1103, 2017.
doi:10.1109/JSEN.2017.2761794

23. Cao, X., D. Tian, Y. Liu, L. Zhang, and T. Wang, "Sensing characteristics of helical long-period gratings written in the double-clad fiber by CO2 laser," IEEE Sensors Journal, Vol. 18, No. 18, 7481-7485, 2018.
doi:10.1109/JSEN.2018.2855038

24. Zhang, A. P., L.-Y. Shao, J.-F. Ding, and S. L. He, "Sandwiched long-period gratings for simultaneous measurement of refractive index and temperature," IEEE Photonics Technology Letters, Vol. 17, No. 11, 2397-2399, 2005.
doi:10.1109/LPT.2005.857621

25. Zhou, J., et al., "Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer," Optics Express, Vol. 22, No. 2, 1680-1686, 2014.
doi:10.1364/OE.22.001680

26. Jiang, L., J. Yang, S. Wang, B. Li, and M. Wang, "Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity," Optics Letters, Vol. 36, No. 19, 3753-3755, 2011.
doi:10.1364/OL.36.003753

27. Alawsi, S. M. K. and M. A. Jabbar, "Refractive index and temperature sensor using HC-1550 infiltrating by different liquid crystal," Optics Photonics Journal, Vol. 8, No. 3, 29-39, 2018.
doi:10.4236/opj.2018.83004

28. Zhou, Y., et al., "Simultaneous measurement of curvature and temperature based on PCF-based interferometer and fiber Bragg grating," Optics Communications, Vol. 284, No. 24, 5669-5672, 2011.
doi:10.1016/j.optcom.2011.08.048

29. Wang, F., K. Pang, T. Ma, X. Wang, Y. J. O. Liu, and L. Technology, "Folded-tapered multimode- no-core fiber sensor for simultaneous measurement of refractive index and temperature," Optics Laser Technology, Vol. 130, 106333, 2020.
doi:10.1016/j.optlastec.2020.106333

30. Zhang, P., et al., "Simpli ed hollow-core fiber-based Fabry-Perot interferometer with modified Vernier effect for highly sensitive high-temperature measurement," IEEE Photonics Journal, Vol. 7, No. 1, 1-10, 2015.

31. Tian, J., Y. Jiao, S. Ji, X. Dong, and Y. Yao, "Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation," Optics Communications, Vol. 412, 121-126, 2018.
doi:10.1016/j.optcom.2017.12.005

32. Shao, L.-Y., et al., "Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect," Optics Communications, Vol. 336, 73-76, 2015.
doi:10.1016/j.optcom.2014.09.075

33. Wang, G., B. Liao, Y. Cao, X. Feng, B.-O. Guan, and J. Yao, "Microwave photonic interrogation of a high-speed and high-resolution temperature sensor based on cascaded fiber-optic sagnac loops," Journal of Lightwave Technology, Vol. PP, No. 99, 1-1, 2020.

34. Yang, Y., et al., "Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity," Optics Express, Vol. 25, No. 26, 33290-33296, 2017.
doi:10.1364/OE.25.033290

35. Wang, Z., L. Huang, C. Liu, H.Wang, S. Sun, and D. Yang, "Sensitivity-enhanced fiber temperature sensor based on vernier effect and dual in-line mach-zehnder interferometers," IEEE Sensors Journal, Vol. 19, No. 18, 7983-7987, 2019.
doi:10.1109/JSEN.2019.2916891

36. Liao, H., et al., "Sensitivity ampli cation of fiber-optic in-line Mach-Zehnder Interferometer sensors with modified Vernier-effect," Optics Express, Vol. 25, No. 22, 26898-26909, 2017.
doi:10.1364/OE.25.026898

37. Abbas, L. G. and H. Li, "Temperature sensing by hybrid interferometer based on Vernier like effect," Optical Fiber Technology, Vol. 64, 102538, 2021.
doi:10.1016/j.yofte.2021.102538

38. Tan, X., Y. Geng, X. Li, Y. Deng, Z. Yin, and R. Gao, "UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature," IEEE Photonics Journal, Vol. 6, No. 4, 1-8, 2014.
doi:10.1109/JPHOT.2014.2332460

39. Cao, K., Y. Liu, and S. Qu, "Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid- lling structure," Optics Express, Vol. 25, No. 24, 29597-29604, 2017.
doi:10.1364/OE.25.029597