Vol. 119
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-22
Full Duplex High Speed Data Transmission Based on Partially Coupled Coils in Wireless Power Transmission Systems
By
Progress In Electromagnetics Research C, Vol. 119, 81-96, 2022
Abstract
For full duplex communication, a signal parallel transfer method based on partial power transmission couplers is proposed in this paper. The power transfer uses a serial LC compensation structure topology, and the data transmission channel adopts a double coupling resonant circuit. In terms of power transmission, some power coupling inductors and power compensation capacitors form a power resonance network with a high frequency trap function, which can isolate the influence of signal transmission. Therefore, there is no need for an additional trap, which reduces power loss and the space occupied by the structure. In terms of signal transmission, the partial coupling coil method can increase the coupling frequency and the data transfer rate. In addition, the signal transmission circuit has the characteristics of dual resonance frequencies. The forward and reverse signals modulate the carrier at different resonance frequencies to realize full duplex communication. Finally, the simulation results prove that the scheme is practicable for full duplex communication and parallel transmission of power, achieving anoutput power of 1.4 KW, and the highest transmission rate can reach 1 Mbps.
Citation
Jianxiong Li Wenlong Yang , "Full Duplex High Speed Data Transmission Based on Partially Coupled Coils in Wireless Power Transmission Systems," Progress In Electromagnetics Research C, Vol. 119, 81-96, 2022.
doi:10.2528/PIERC22012709
http://www.jpier.org/PIERC/pier.php?paper=22012709
References

1. Cheng, C., Z. Zhou, W. Li, C. Zhu, Z. Deng, and C. C. Mi, "A multi-load wireless power transfer system with series-parallel-series (SPS) compensation," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7126-7130, 2019.
doi:10.1109/TPEL.2019.2895598

2. Guo, J., L. Tan, H. Liu, W. Wang, and X. Huang, "Stabilization control of output power in double-source wireless power transfer systems without direct output feedback," IEEE Microwave and Wireless Components Letters: A Publication of the IEEE Microwave Theory and Techniques Society, Vol. 26, No. 11, 960-962, 2016.
doi:10.1109/LMWC.2016.2615026

3. Zhao, L., D. Thrimawithana, and U. Madawala, "A hybrid bi-directional wireless EV charging system tolerant to pad misalignment," IEEE Transactions on Industrial Electronics, Vol. 64, No. 9, 7079-7086, 2017.
doi:10.1109/TIE.2017.2686301

4. Mai, R., Y. Chen, Y. Li, Y. Zhang, G. Cao, and Z. He, "Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter," IEEE Transactions on Power Electronics, Vol. 32, No. 8, 5897-5906, 2017.
doi:10.1109/TPEL.2017.2654360

5. Zhou, S. and C. C. Mi, "Multi-paralleled LCC reactive power compensation networks and its tuning method for electric vehicle dynamic wireless charging," IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, 6546-6556, 2016.
doi:10.1109/TIE.2015.2512236

6. Zhen, Z., K. T. Chau, C. Liu, and C. Qiu, "Energy-security-based contactless battery charging system for roadway-powered electric vehicles," IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW). IEEE, 1-6, 2015.

7. Kilinc, E. G., C. Baj-Rossi, S. Ghoreishizadeh, S. Riario, F. Stradolini, C. Boero, and C. Dehollain, "A system for wireless power transfer and data communication of long-term bio-monitoring," IEEE Sensors Journal, Vol. 15, No. 11, 6559-6569, 2015.
doi:10.1109/JSEN.2015.2462362

8. Esteban, B., M. Sid-Ahmed, and N. C. Kar, "A comparative study of power supply architectures in wireless EV charging systems," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6408-6422, 2015.
doi:10.1109/TPEL.2015.2440256

9. Li, X., C. Tang, X. Dai, P. Deng, and Y. Su, "An inductive and capacitive combined parallel transmission of power and data for wireless power transfer systems," IEEE Transactions on Power Electronics, Vol. 33, No. 6, 4980-4991, 2018.
doi:10.1109/TPEL.2017.2725990

10. Cen, L., S. N. Melkote, J. Castle, and H. Appelman, "A wireless force-sensing and model-based approach for enhancement of machining accuracy in robotic milling," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 5, 2227-2235, 2016.
doi:10.1109/TMECH.2016.2567319

11. Brusamarello, V. J., Y. B. Blauth, R. De. Azambuja, I. Muller, and F. R. de Sousa, "Power transfer with an inductive link and wireless tuning," IEEE Transactions on Instrumentation & Measurement, Vol. 62, No. 5, 924-931, 2013.
doi:10.1109/TIM.2013.2245041

12. Wu, J., C. Zhao, Z. Lin, J. Du, Y. Hu, and X. He, "Wireless power and data transfer via a common inductive link using frequency division multiplexing," IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, 7810-7820, 2015.
doi:10.1109/TIE.2015.2453934

13. Qian, Z., R. Wang, Z. Wang, J. Du, J. Wu, and X. He, "Closed-loop control design for WPT system using power and data frequency division multiplexing technique," 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017.

14. Sun, Y., P. X. Yan, Z. H. Wang, and Y. Y. Luan, "The parallel transmission of power and data with the shared channel for an inductive power transfer system," IEEE Transactions on Power Electronics, Vol. 31, No. 8, 5495-5502, 2016.
doi:10.1109/TPEL.2015.2497739

15. Kim, J., G. Wei, M. H. Kim, H. S. Ryo, and C. Zhu, "A wireless power and information simultaneous transfer technology based on 2FSK modulation using the dual bands of series - parallel combined resonant circuit ," IEEE Transactions on Power Electronics, Vol. 34, No. 3, 2956-2965, 2018.
doi:10.1109/TPEL.2018.2847044

16. Ji, L., L. Wang, C. Liao, and S. Li, "Simultaneous wireless power and bidirectional information transmission with a single-coil, dual-resonant structure," IEEE Transactions on Industrial Electronics, 4013-4022, 2019.
doi:10.1109/TIE.2018.2831196

17. Fan, Y., S. Yue, D. Xin, Z. Zuo, and A. You, "Simultaneous wireless power transfer and full-duplex communication with a single coupling interface," IEEE Transactions on Power Electronics, 2020.

18. Zhang, Y., T. Kan, Z. Yan, Y. Mao, Z. Wu, and C. C. Mi, "Modeling and analysis of series-none compensation for wireless power transfer systems with a strong coupling," IEEE Transactions on Power Electronics, Vol. 34, No. 2, 2018.