Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-04-05

A Dual-Band High-Gain Substrate Integrated Waveguide Slot Antenna for 5G Application

By Umesh Singh and Rajesh Mishra
Progress In Electromagnetics Research C, Vol. 119, 191-200, 2022
doi:10.2528/PIERC22020803

Abstract

In this paper, the authors propose a small substrate integrated waveguide (SIW) slot antenna for future fifth generation (5G) communication systems. It works at 28 and 38 GHz. The proposed geometry consists of horizontal and vertical vias as well as a central circular ring. The cut slots in the etched center circular ring create a significant capacitive loading effect, lowering the lower resonating mode. Further, the introduced circular ring slot resonates on TE101 and TE102 modes at 28 and 38 GHz, respectively. The measured impedance bandwidths are 27.77-28.02 GHz and 37.99-38.10 GHz. Peak gains in the lower and upper bands are measured to be 6.96-7.15 dBi and 8.10-8.22 dBi, respectively. At 28 and 38 GHz, the observed half-power beam-widths (HPBWs) are 74.5˚ and 79.2˚, respectively. Considering these performance results, such as single-layer dual-bands, high gain, small size, and good radiation efficiency, the designed SIW slot antenna is suitable for future millimeter-wave 5G applications.

Citation


Umesh Singh and Rajesh Mishra, "A Dual-Band High-Gain Substrate Integrated Waveguide Slot Antenna for 5G Application," Progress In Electromagnetics Research C, Vol. 119, 191-200, 2022.
doi:10.2528/PIERC22020803
http://www.jpier.org/PIERC/pier.php?paper=22020803

References


    1. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, No. 9, 78-86, 2014.
    doi:10.1109/MCOM.2014.6894456

    2. Stevenson, A. F., "Theory of slots in rectangular wave-guides," J. Appl. Phys., Vol. 19, 24-38, 1948.
    doi:10.1063/1.1697868

    3. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
    doi:10.1049/iet-map.2010.0463

    4. Liu, J., X. Tang, Y. Li, and Y. Long, "Substrate integrated waveguide leaky-wave antenna with H-shaped slots," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3962-3967, 2012.
    doi:10.1109/TAP.2012.2201085

    5. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, Hoboken, NJ, USA, 2016.

    6. Patanvariya, D. G. and A. Chatterjee, "Modified-T shaped wideband antenna for Ka-band applications," International Conference on Communication and Signal Processing (ICCSP), 1654-1658, 2020.
    doi:10.1109/ICCSP48568.2020.9182254

    7. Mukherjee, S., A. Biswas, and K. V. Srivastava, "Substrate integrated waveguide cavity-backed dumbbell-shaped slot antenna for dual-frequency applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1314-1317, 2014.

    8. Xie, H., L. Belostotski, and M. Okoniewski, "A Q-band high-gain substrate-integrated waveguide slot antenna," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1370-1374, 2015.
    doi:10.1002/mop.29087

    9. Mukherjee, S. and A. Biswas, "Design of dual band and dual-polarised dual band SIW cavity backed bow-tie slot antennas," IET Microwaves, Antennas & Propagation, Vol. 10, No. 9, 1002-1009, 2016.
    doi:10.1049/iet-map.2015.0786

    10. Nandi, S. and A. Mohan, "Bowtie slotted dual-band SIW antenna," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2303-2308, 2016.
    doi:10.1002/mop.30035

    11. Wu, Q., J. Yin, C. Yu, H. Wang, and W. Hong, "Low-profile millimeter-wave SIW cavity-backed dual-band circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7310-7315, 2017.
    doi:10.1109/TAP.2017.2758165

    12. Wei, D. J., J. Li, G. Yang, J. Liu, and J. J. Yang, "Design of compact dual-band SIW slotted array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1085-1089, 2018.
    doi:10.1109/LAWP.2018.2833117

    13. Deckmyn, T., M. Cauwe, D. V. Ginste, H. Rogier, and S. Agneessens, "Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2405-2412, 2019.
    doi:10.1109/TAP.2019.2894325

    14. Lai, F. P., L. W. Chang, and Y. S. Chen, "Miniature dual-band substrate integrated waveguide slotted antenna array for millimeter-wave 5G applications," International Journal of Antennas and Propagation, Vol. 3, 1-10, 2020.
    doi:10.1155/2020/6478272

    15. Feng, B., X. He, and J. C. Cheng, "Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory," IEEE Access, Vol. 8, 21589-21601, 2020.
    doi:10.1109/ACCESS.2020.2968964

    16. Patanvariya, D. G. and A. Chatterjee, "A compact bow-tie shaped wide-band microstrip patch antenna for future 5G communication networks," Radioengineering, Vol. 30, No. 1, 2021.
    doi:10.13164/re.2021.0040

    17. CST Studio Suite, Computer Simulation Technology, [Online], Available: https://www.cst.com.