Vol. 119
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-04-05
A Dual-Band High-Gain Substrate Integrated Waveguide Slot Antenna for 5G Application
By
Progress In Electromagnetics Research C, Vol. 119, 191-200, 2022
Abstract
In this paper, the authors propose a small substrate integrated waveguide (SIW) slot antenna for future fifth generation (5G) communication systems. It works at 28 and 38 GHz. The proposed geometry consists of horizontal and vertical vias as well as a central circular ring. The cut slots in the etched center circular ring create a significant capacitive loading effect, lowering the lower resonating mode. Further, the introduced circular ring slot resonates on TE101 and TE102 modes at 28 and 38 GHz, respectively. The measured impedance bandwidths are 27.77-28.02 GHz and 37.99-38.10 GHz. Peak gains in the lower and upper bands are measured to be 6.96-7.15 dBi and 8.10-8.22 dBi, respectively. At 28 and 38 GHz, the observed half-power beam-widths (HPBWs) are 74.5˚ and 79.2˚, respectively. Considering these performance results, such as single-layer dual-bands, high gain, small size, and good radiation efficiency, the designed SIW slot antenna is suitable for future millimeter-wave 5G applications.
Citation
Umesh Singh, and Rajesh Mishra, "A Dual-Band High-Gain Substrate Integrated Waveguide Slot Antenna for 5G Application," Progress In Electromagnetics Research C, Vol. 119, 191-200, 2022.
doi:10.2528/PIERC22020803
References

1. Sulyman, A. I., A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Communications Magazine, Vol. 52, No. 9, 78-86, 2014.
doi:10.1109/MCOM.2014.6894456

2. Stevenson, A. F., "Theory of slots in rectangular wave-guides," J. Appl. Phys., Vol. 19, 24-38, 1948.
doi:10.1063/1.1697868

3. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

4. Liu, J., X. Tang, Y. Li, and Y. Long, "Substrate integrated waveguide leaky-wave antenna with H-shaped slots," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3962-3967, 2012.
doi:10.1109/TAP.2012.2201085

5. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, Hoboken, NJ, USA, 2016.

6. Patanvariya, D. G. and A. Chatterjee, "Modified-T shaped wideband antenna for Ka-band applications," International Conference on Communication and Signal Processing (ICCSP), 1654-1658, 2020.
doi:10.1109/ICCSP48568.2020.9182254

7. Mukherjee, S., A. Biswas, and K. V. Srivastava, "Substrate integrated waveguide cavity-backed dumbbell-shaped slot antenna for dual-frequency applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1314-1317, 2014.

8. Xie, H., L. Belostotski, and M. Okoniewski, "A Q-band high-gain substrate-integrated waveguide slot antenna," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1370-1374, 2015.
doi:10.1002/mop.29087

9. Mukherjee, S. and A. Biswas, "Design of dual band and dual-polarised dual band SIW cavity backed bow-tie slot antennas," IET Microwaves, Antennas & Propagation, Vol. 10, No. 9, 1002-1009, 2016.
doi:10.1049/iet-map.2015.0786

10. Nandi, S. and A. Mohan, "Bowtie slotted dual-band SIW antenna," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2303-2308, 2016.
doi:10.1002/mop.30035

11. Wu, Q., J. Yin, C. Yu, H. Wang, and W. Hong, "Low-profile millimeter-wave SIW cavity-backed dual-band circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7310-7315, 2017.
doi:10.1109/TAP.2017.2758165

12. Wei, D. J., J. Li, G. Yang, J. Liu, and J. J. Yang, "Design of compact dual-band SIW slotted array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1085-1089, 2018.
doi:10.1109/LAWP.2018.2833117

13. Deckmyn, T., M. Cauwe, D. V. Ginste, H. Rogier, and S. Agneessens, "Dual-band (28, 38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2405-2412, 2019.
doi:10.1109/TAP.2019.2894325

14. Lai, F. P., L. W. Chang, and Y. S. Chen, "Miniature dual-band substrate integrated waveguide slotted antenna array for millimeter-wave 5G applications," International Journal of Antennas and Propagation, Vol. 3, 1-10, 2020.
doi:10.1155/2020/6478272

15. Feng, B., X. He, and J. C. Cheng, "Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory," IEEE Access, Vol. 8, 21589-21601, 2020.
doi:10.1109/ACCESS.2020.2968964

16. Patanvariya, D. G. and A. Chatterjee, "A compact bow-tie shaped wide-band microstrip patch antenna for future 5G communication networks," Radioengineering, Vol. 30, No. 1, 2021.
doi:10.13164/re.2021.0040

17. CST Studio Suite, Computer Simulation Technology, [Online], Available: https://www.cst.com.