Vol. 119
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-03-24
Dual Band Two Element Rim Based MIMO Antennas with Coupling Manipulation for Low SAR Mobile Handsets
By
Progress In Electromagnetics Research C, Vol. 119, 125-134, 2022
Abstract
In this paper, the mutual coupling from a multiple-input-multiple-output (MIMO) rim antenna has been utilized to control the level of specific absorption rate (SAR), when the mobile handset comes in close contact to the human body. The proposed antenna is capable of operating at 2.1 GHz and 4.3 GHz, respectively. A periodic defective ground structure (DGS) in conjunction with diodes and capacitors are used to manipulate the coupling between antenna elements. The working of the proposed dual band antenna design is validated using the characteristic mode analysis (CMA), and the current distribution. The MIMO performance is studied by using envelope correlation coefficient (ECC) and loss in capacity analysis. The effect of hand and LCD on the antenna performance is shown. The SAR analysis shows up to 30% reduction, in comparison to the baseline value of the SAR of the proposed antenna design.
Citation
Muhammad Ali Jamshed Tim W. C. Brown Fabien Héliot , "Dual Band Two Element Rim Based MIMO Antennas with Coupling Manipulation for Low SAR Mobile Handsets," Progress In Electromagnetics Research C, Vol. 119, 125-134, 2022.
doi:10.2528/PIERC22022103
http://www.jpier.org/PIERC/pier.php?paper=22022103
References

1. Li, W., W. Lin, and G. Yang, "A compact MIMO antenna system design with low correlation from 1710 MHz to 2690 MHz," Progress In Electromagnetics Research, Vol. 144, 59-65, 2014.
doi:10.2528/PIER13111305

2. Ren, A., et al., "A compact building block with two shared-aperture antennas for eight-antenna MIMO array in metal-rimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6430-6438, 2019.
doi:10.1109/TAP.2019.2920306

3. Sun, L., Y. Li, Z. Zhang, and Z. Feng, "Wideband 5G MIMO antenna with integrated orthogonalmode dual-antenna pairs for metal-rimmed smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2494-2503, 2019.
doi:10.1109/TAP.2019.2948707

4. Ban, Y.-L., et al., "4G/5G multiple antennas for future multi-mode smartphone applications," IEEE Access, Vol. 4, 2981-2988, 2016.
doi:10.1109/ACCESS.2016.2582786

5. Wong, K.-L., C.-Y. Tsai, J.-Y. Lu, D.-M. Chian, and W.-Y. Li, "Compact eight MIMO antennas for 5G smartphones and their MIMO capacity verification," 2016 URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 1054-1056, IEEE, 2016.
doi:10.1109/URSIAP-RASC.2016.7601145

6. Jamshed, M. A., F. Heliot, and T. W. Brown, "A survey on electromagnetic risk assessment and evaluation mechanism for future wireless communication systems," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 4, No. 1, 24-36, 2019.
doi:10.1109/JERM.2019.2917766

7. Kitra, M. I., C. J. Panagamuwa, P. McEvoy, J. C. Vardaxoglou, and J. R. James, "Low SAR ferrite handset antenna design," IEEE Transactions on Antennas and Propagation, Vol. 55, 1155-1164, Apr. 2007.
doi:10.1109/TAP.2007.893370

8. Wang, J., O. Fujiwara, and T. Takagi, "Effects of ferrite sheet attachment to portable telephone in reducing electromagnetic absorption in human head," IEEE International Symposium on Electromagnetic Compatability, Vol. 2, 822-825, Aug. 1999.

9. Gómez-Villanueva, R., H. Jardón-Aguilar, and R. L. y Miranda, "State of the art methods for low SAR antenna implementation," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, Apr. 2010.

10. Stanley, M., Y. Huang, H. Wang, H. Zhou, Z. Tian, and Q. Xu, "A novel reconfigurable metal rim integrated open slot antenna for octa-band smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3352-3363, 2017.
doi:10.1109/TAP.2017.2700084

11. Ban, Y.-L., Y.-F. Qiang, G. Wu, H. Wang, and K.-L. Wong, "Reconfigurable narrow-frame antenna for LTE/WWAN metal-rimmed smartphone applications," IET Microwaves, Antennas & Propagation, Vol. 10, No. 10, 1092-1100, 2016.
doi:10.1049/iet-map.2015.0610

12. Zhang, L.-W., et al., "Parallel dual-loop antenna for WWAN/LTE metalrimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1217-1226, 2018.
doi:10.1109/TAP.2018.2796724

13. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, 1971.
doi:10.1109/TAP.1971.1139935

14. Chen, Y. and C.-F. Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, John Wiley & Sons, 2015.
doi:10.1002/9781119038900

15. Chen, X., S. Zhang, and Q. Li, "A review of mutual coupling in MIMO systems," IEEE Access, Vol. 6, 24706-24719, 2018.
doi:10.1109/ACCESS.2018.2830653

16. Chae, S. H., S.-K. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109

17., "IEC/IEEE International Standard - Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 1: General requirements for using the finite-difference time-domain (FDTD) method for SAR calculations," IEC/IEEE 62704-1:2017, 1-86, Oct. 2017.

18., "IEEE recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human head from wireless communications devices: Measurement techniques," IEEE Std 1528-2013 (Revision of IEEE Std 1528-2003), 1-246, Sep. 2013.