Vol. 119
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-04-07
Beamforming for 5G Cellular Communications with Analyzing the Linear and Circular Polarized Antenna Arrays Gain Effect
By
Progress In Electromagnetics Research C, Vol. 119, 201-217, 2022
Abstract
Since massive multiple-input multiple-output (MIMO) array and beamforming significantly improve spectrum efficiency, where beamforming adapts the radiation pattern of the massive array, most previous studies focus on the MIMO beamforming optimization problem to maximize the utility of the system by assuming that a massive array consists of an isotropic antenna. This research work was conducted to investigate the beamforming optimization problem with practical elements in a MIMO array. By inserting the effect of a practical antenna array gain in the channel model, the impact of array elements feeding on the beamforming optimization problem could be illustrated. Furthermore, the beamforming optimization, non-convex issue, is reformulated to synonymous convex optimization issue, through a weighted minimum mean square error (WMMSE) technique. Consequently, a conformal array (CfA) with a half wavelength dipole element is proposed at the base station (BS). The simulation results display that the suggested WMMSE-beamforming technique performance with considering antenna array gain effect can yield much better and accurate system performance than the other algorithms. Eventually, to analyze the impact of array gain on the optimization problem solution in addition to boot the network capacity, a curl antenna array in octagonal prism geometry is created. The curl antenna is circularly polarized and has a high gain compared to the half-wavelength dipole.
Citation
Amany Mohamed Saleh Mahmoud Mohamed Elmesalawy Korany Mahmoud Ibrahim Ismail Ibrahim , "Beamforming for 5G Cellular Communications with Analyzing the Linear and Circular Polarized Antenna Arrays Gain Effect," Progress In Electromagnetics Research C, Vol. 119, 201-217, 2022.
doi:10.2528/PIERC22022205
http://www.jpier.org/PIERC/pier.php?paper=22022205
References

1. Marzetta, T. L., "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., Vol. 9, No. 11, 3590-3600, 2010.
doi:10.1109/TWC.2010.092810.091092

2. Larsson, E. G., F. Tufvesson, O. Edfors, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Magazine, Vol. 52, No. 2, 186-195, 2014.
doi:10.1109/MCOM.2014.6736761

3. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, 2014.
doi:10.1109/JSAC.2014.2328098

4. Larsson, E. G. and L. V. der Perre, "Massive MIMO for 5G," IEEE 5G Tech Focus, Vol. 1, No. 1, 2017.

5. Arunitha, A., T. Gunasekaran, and N. S. Kumar, "Adaptive beam forming algorithms for MIMO antenna," J. Innov. Technol. Explor. Eng., Vol. 14, No. 8, 9-12, 2015.

6. Han, S., I. Chih-Lin, Z. Xu, and C. Rowell, "Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G," IEEE Communications Magazine, Vol. 53, No. 1, 186-194, 2015.
doi:10.1109/MCOM.2015.7010533

7. Vook, F. W., A. Ghosh, and T. A. Thomas, "MIMO and beamforming solutions for 5G technology," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Jun. 1, 2014.

8. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Transactions on Microwave Theory and Technique, Vol. 66, No. 7, 3403-3418, 2018.
doi:10.1109/TMTT.2018.2829702

9. Shi, Q., et al., "An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel," IEEE Trans. Signal. Process., Vol. 59, No. 9, 4331-4340, 2011.
doi:10.1109/TSP.2011.2147784

10. Shi, Y., J. Zhang, and K. B. Letaief, "Group sparse beamforming for green cloud-RAN," IEEE Trans. Wirel. Commun., Vol. 13, No. 5, 2809-2823, 2014.
doi:10.1109/TWC.2014.040214.131770

11. Dai, B. and W. Yu, "Sparse beamforming and user-centric clustering for downlink cloud radio access network," IEEE Access, Vol. 2, 1326-1339, 2014.

12. Luo, S., R. Zhang, and T. J. Lim, "Downlink and uplink energy minimization through user association and beamforming in CRAN," IEEE Trans. Wirel. Commun., Vol. 14, No. 1, 494-508, 2015.
doi:10.1109/TWC.2014.2352619

13. Cumanan, K., et al., "Rahulamathavan. Robust MMSE beamforming for multiantenna relay networks," IEEE Trans. Veh. Technol., Vol. 66, No. 5, 3900-3912, 2018.

14. Wang, K., K. Yang, and C. Magurawalage, "Joint energy minimization and resource allocation in C-RAN with mobile cloud," IEEE Trans. Cloud Comput., Vol. 6, No. 3, 760-770, 2017.
doi:10.1109/TCC.2016.2522439

15. Li, H., Z. Wang, and H. Wang, "Joint user association and power allocation for massive MIMO hetnets with imperfect CSI," Signal Processing, Vol. 173, 2020.

16. Mai, R., D. H. N. Nguyen, and T. Le-Ngoc, "MMSE hybrid precoder design for millimeter-wave massive MIMO systems," 2016 IEEE Wireless Communications and Networking Conf., 1-6, Doha, Apr. 2016.

17. Nasseri, S., M. R. Nakhai, and T. A. Le, "Chance constrained robust downlink beamforming in multicell networks," IEEE Trans. Mob. Comput., Vol. 15, No. 11, 2682-2691, 2016.
doi:10.1109/TMC.2016.2516981

18. Abdelhakam, M. M., M. M. Elmesalawy, K. R. Mahmoud, and I. I. Brahim, "Efficient WMMSE beamforming for 5G mmWave cellular networks exploiting the effect of antenna array geometries," IET Communications, Vol. 122, 169-178, 2017.

19. Li, H., J. Cheng, Z. Wang, and H. Wang, "Joint antenna selection and power allocation for an energy-efficient massive MIMO system," IEEE Wireless Commun. Letters, Vol. 8, No. 1, 257-260, 2019.
doi:10.1109/LWC.2018.2869152

20. Chen, C.-M., V. Volski, L. V. D. Perre, G. A. E. Vandenbosch, and S. Pollin, "Finite large antenna arrays for massive MIMO: Characterization and system impact," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6712-6720, 2017.
doi:10.1109/TAP.2017.2754444

21. Marinovic, T., A. Farsaei, R. Maaskant, A. L. Lavieja, M. N. Johansson, U. Gustavsson, and G. A. E. Vandenbosch, "Effect of antenna array element separation on capacity of MIMO systems including mutual coupling," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 415-416, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8888643

22. Huang, X., et al., "Joint scheduling and beamforming coordination in cloud radio access networks with QoS guarantees," IEEE Trans. Veh. Technol., Vol. 65, No. 7, 5449-5460, 2016.
doi:10.1109/TVT.2015.2464278

23. Kulkarni, M. N., A. Ghosh, and J. G. Andrews, "A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming," IEEE Trans. Commun., Vol. 64, No. 5, 1952-1967, 2016.
doi:10.1109/TCOMM.2016.2542825

24. Xia, P., R. W. Heath, and N. Gonzalez-Prelcic, "Robust analog precoding designs for millimeter wave MIMO transceivers with frequency and time division duplexing," IEEE Trans. Commun., Vol. 64, No. 11, 4622-4634, 2016.
doi:10.1109/TCOMM.2016.2604312

25. Andrews, J. G., et al., "Modeling and analyzing millimeter wave cellular systems," IEEE Trans. Commun., Vol. 65, No. 1, 403-430, 2017.

26. Nakano, H., S. Okuzawa, K. Ohishi, H. Mimaki, and J. Yamauchi, "A curl antenna," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 11, 1570-1575, 1993.
doi:10.1109/8.267357

27. Zainud-Deen, S. H., K. R. Mahmoud, and M. El-Adawy, "Sabry MM Ibrahem. Design of Yagi-Uda antenna and electromagnetically coupled curl antenna using particle swarm optimization algorithm," Proceedings of the Twenty-Second National Radio Science Conference, NRSC, 115-124, 2005.

28. Noordin, N. H., V. Zuniga, A. O. El-Rayis, N. Haridas, A. T. Erdogan, and T. Arslan, "Uniform circular arrays for phased array antenna," Loughborough Antennas and Propagation Conference, Loughborough, 2011.

29. Tang, J., W. P. Tay, and T. Q. S. Quek, "Cross-layer resource allocation with elastic service scaling in cloud radio access network," IEEE Trans. Wirel. Commun., Vol. 14, No. 9, 5068-5081, 2015.
doi:10.1109/TWC.2015.2432023

30. Nasir, A. A., et al., "Path-following algorithms for beamforming and signal splitting in RF energy harvesting networks," IEEE Commun. Lett., Vol. 20, No. 8, 1687-1690, 2016.
doi:10.1109/LCOMM.2016.2578921

31. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
doi:10.1017/CBO9780511804441