Vol. 120

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-06-07

Optimal Design of a Circularly Polarized Antenna for LTE Bands 42/43 Applications

By Saja Alaa Gheni and Dhirgham Kamal Naji
Progress In Electromagnetics Research C, Vol. 120, 223-241, 2022
doi:10.2528/PIERC22041401

Abstract

In this paper, an optimized circularly polarized (CP) antenna is proposed for operating in the LTE bands 42/43 applications. This CP antenna comprises three sections, the meander-line and L-shaped strip structures modeled on the front side of a Roger 3003 substrate, and on the back side a rotated H-shaped ground plane is printed. In order to further increase the antenna common bandwidth (CBW), that is the voltage standing wave ratio bandwidth (VRBW) and axial ratio bandwidth (ARBW), an offset-fed line on the front side and a shorting pinare used. A feasible solution of the optimized CP antenna with compact size is achieved by applying an optimization design methodology with a fitness function that takes into account the antenna performance parameters, CBW or both the VRBW and ARBW in addition to the realized gain (RG). Two programs are operating in synchronous fashion for finding the optimal geometric antenna parameters, a particle swarm optimization (PSO) for implementing the fitness function in MATLAB and a CST MWS simulator tool for extracting the antenna performance parameters. The optimized antennas without and with shorting pin are obtained with a broadest CBW and feature of CP operation and an acceptable RG across the desired LTE 42 (3.4-3.6 GHz) and LTE 42/43 (3.4-3.8 GHz) band, respectively. The proposed two designed antennas, with and without shorting pin, are fabricated, and the measured results are in good agreement with the simulated ones. From measured results, a -10 dB-S11 impedance bandwidth (IBW) of 220 MHz (3.38-3.60 GHz) and 460 MHz (3.37-3.83 GHz), a 3-dB ARBW of 200 MHz (3.4-3.6 GHz) and 390 MHz (3.42-3.81 GHz) with respective maximum RG of 2.26 and 2.39 dBic are exhibited by the antennas without and with pin, respectively. The obtained 3-dB ARBWs and -10-dB IBWs make the proposed antennas entirely cover the LTE 42 or LTE 42/43 frequency bands.

Citation


Saja Alaa Gheni and Dhirgham Kamal Naji, "Optimal Design of a Circularly Polarized Antenna for LTE Bands 42/43 Applications," Progress In Electromagnetics Research C, Vol. 120, 223-241, 2022.
doi:10.2528/PIERC22041401
http://www.jpier.org/PIERC/pier.php?paper=22041401

References


    1. Gupta, A. and R. K. Jha, "A survey of 5G network: Architecture and emerging technologies," IEEE Access, Vol. 3, 1206-1232, 2015.
    doi:10.1109/ACCESS.2015.2461602

    2. Arya, A. K., S. J. Kim, S. Park, D.-H. Kim, R. S. Hassan, K. Ko, and S. Kim, "Shark-fin antenna for railway communications in LTE-R, LTE, and lower 5G frequency bands," Progress In Electromagnetics Research, Vol. 167, 83-94, 2020.
    doi:10.2528/PIER20040201

    3. Zhang, L., S. Gao, Q. Luo, P. R. Young, W. Li, and Q. Li, "Inverted-S antenna with wideband circular polarization and wide axial ratio beamwidth," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1740-1748, Apr. 2017.
    doi:10.1109/TAP.2016.2628714

    4. Beigmohammadi, G., C. Ghobadi, J. Nourinia, and M. Ojaroudi, "Small square slot antenna with circular polarisation characteristics for WLAN/WiMAX applications," Electronics Letters, Vol. 46, No. 10, 672-673, 2010.
    doi:10.1049/el.2010.0623

    5. Ko, S. T., B. C. Park, and J. H. Lee, "Dual band circularly polarized patchantenna with first positive and negative modes," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1165-1168, Sept. 2013.
    doi:10.1109/LAWP.2013.2281320

    6. Cai, T., G. M. Wang, X. F. Zhang, and J. P. Shi, "Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1072-1076, May 2015.
    doi:10.1109/LAWP.2015.2394452

    7. Kuhestani, H., M. Rahimi, and Z. Mansouri, "Dual-band counter circularly polarized radiation from a single-arm metamaterial-based spiral antenna," Microwave and Optimal Technology Letters, Vol. 57, 2015.

    8. Verma, A., A. K. Singh, and N. Srivastava, "Slot loaded EBG-based metasurface for performance improvement of circularly polarized antenna for WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 3, 1-9, 2019.

    9. Cao, W., X. Lv, Z. Zeng, J. Jin, and H. Liu, "Bandwidth enhanced dual-bandpatch-coupling microstrip antenna with omnidirectional CP and unidirectional CP characteristics," IET Microw. Antennas Propag., Vol. 13, No. 5, 584-590, 2019.
    doi:10.1049/iet-map.2018.5427

    10. Tran, H. H., S. X. Ta, and I. Park, "A compact circularly polarized crossed-dipole antenna for an RFID tag," IEEE Antennas Wireless Propag. Lett., Vol. 14, 674-677, Dec. 2014.

    11. Lim, S., J. Chen, and C. Cato, "Design of a thin, electrically small, two-element parasitic array with circular polarization," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 1006-1009, Jun. 2018.
    doi:10.1109/LAWP.2018.2829201

    12. Gao, S. S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, Wiley, Hoboken, NJ, USA, 2014.
    doi:10.1002/9781118790526

    13. Shi, Y. and J. Liu, "A circularly polarized octagon-star-shaped microstrip patch antenna with conical radiation pattern," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2073-2078, Apr. 2018.
    doi:10.1109/TAP.2018.2800801

    14. Yang, W., Y. Pan, S. Zheng, and P. Hu, "A low-profile wideband circularly polarized crossed-dipole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2126-2129, May 2017.
    doi:10.1109/LAWP.2017.2699975

    15. Yang, H. C., X. Y. Liu, Y. Fan, and M. M. Tentzeris, "Flexible circularly polarized antenna with axial ratio bandwidth enhancement for off-body communications," IET Microw. Antennas Propag., Vol. 15, 754-767, 2021.
    doi:10.1049/mia2.12081

    16. Le, T. T., H. H. Tran, and A. A. Althuwayb, "Wideband circularly polarized antenna based on a non-uniform metasurface," Applied Sciences, Vol. 10, No. 23, 8652, 2020.
    doi:10.3390/app10238652

    17. Guo, Y.-X. and D. C. H. Tan, "Wideband single-feed circularly polarized patch antenna withconical radiation pattern," IEEE Antennas Wireless Propag. Lett., Vol. 8, 924-926, Jul. 2009.

    18. Zhang, H., Y. Guo, and G. Wang, "A wideband circularly polarized crossed-slot antenna with stable phase center," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 5, 941-945, May 2019.
    doi:10.1109/LAWP.2019.2906363

    19. Yaseen, R. M., D. K. Naji, and A. M. Shakir, "Optimization design methodology of broadband or multiband antenna for RF energy harvesting applications," Progress In Electromagnetics Research B, Vol. 93, 169-194, 2021.
    doi:10.2528/PIERB21070104

    20. Boursianis, D., et al., "Multiband patch antenna design using nature-inspired optimization method," IEEE Open Journal of Antennas and Propagation, Vol. 2, 151-162, 2021.
    doi:10.1109/OJAP.2020.3048495

    21. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized five-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
    doi:10.2528/PIERB19012905

    22. Moore, M., Z. Iqbal, and S. Lim, "A size-reduced, broadband, bidirectional, circularly polarized antenna for potential application in WLAN, WiMAX, 4G, and 5G frequency bands," Progress In Electromagnetics Research C, Vol. 114, 1-11, 2021.
    doi:10.2528/PIERC21051801

    23. Pietrenko-Dabrowska, A. and S. Koziel, "Expedited antenna optimization with numerical derivatives and gradient change tracking," Engineering Computations, Vol. 37, No. 4, 1179-1193, 2020.
    doi:10.1108/EC-04-2019-0155

    24. Balanis, C. A., Antenna Theory Analysis and Design, 4th Edition, John Wiley & Sons, 2016.