Vol. 120

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-06-04

Design and Analysis of Multiband Fractal Reconfigurable Antenna Using PIN Diodes for Smart Wireless Communications

By Iqra Masroor, Jamshed Ansari, Amrees Pandey, and Piyush Kumar Mishra
Progress In Electromagnetics Research C, Vol. 120, 209-222, 2022
doi:10.2528/PIERC22041402

Abstract

Fractal and reconfigurable antennas are the need of modern wireless communication systems that operate under dynamic scenarios catering to the diversified needs of modern wireless applications. In this dissemination, a novel multiband Fractal Reconfigurable Antenna (FRA) has been presented and discussed using two RF PIN diodes as switching elements for electronic reconfiguration. It is analyzed using equivalent circuit concept and investigated in terms of various antenna performance parameters. The proposed FRA can operate in various frequency bands resonating at four different frequencies with switchable bandwidth and gain. The highest gain is observed to be about 8.37 dB at 9.68 GHz while the highest bandwidth is about 540 MHz in the X-band. The simulation and measurement results obtained are found to be in agreement. The multiband characteristics of the proposed FRA make it useful for smart wireless communication applications in the S (2-4 GHz), C (4-8 GHz) and X (8-12 GHz) microwave bands.

Citation


Iqra Masroor, Jamshed Ansari, Amrees Pandey, and Piyush Kumar Mishra, "Design and Analysis of Multiband Fractal Reconfigurable Antenna Using PIN Diodes for Smart Wireless Communications," Progress In Electromagnetics Research C, Vol. 120, 209-222, 2022.
doi:10.2528/PIERC22041402
http://www.jpier.org/PIERC/pier.php?paper=22041402

References


    1. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002, doi: 10.1109/74.997888.
    doi:10.1109/74.997888

    2. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003, doi: 10.1109/MAP.2003.1189650.
    doi:10.1109/MAP.2003.1189650

    3. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 5, 981-985, May 2019, doi: 10.1109/LAWP.2019.2906829.
    doi:10.1109/LAWP.2019.2906829

    4. Azari, A., "A new super wideband fractal microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1724-1727, May 2011, doi: 10.1109/TAP.2011.2128294.
    doi:10.1109/TAP.2011.2128294

    5. Lopes, M., M. N. Aik, and A. Dessai, "Design and simulation of frequency reconfigurable microstrip patch antenna for C band and X band applications," 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), 1-6, 2017, doi: 10.1109/ICCUBEA.2017.8464009.

    6. Majid, H. A., M. K. Abdul Rahim, M. R. Hamid, N. A. Murad, and M. F. Ismail, "Frequency-reconfigurable microstrip patch-slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 218-220, 2013, doi: 10.1109/LAWP.2013.2245293.
    doi:10.1109/LAWP.2013.2245293

    7. Yang, S. S., A. A. Kishk, and K. Lee, "Frequency reconfigurable U-slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 127-129, 2008, doi: 10.1109/LAWP.2008.921330.
    doi:10.1109/LAWP.2008.921330

    8. Altaf, A., J. Jung, Y. Yang, K. Lee, and K. C. Hwang, "Reconfigurable dual-/triple-band circularly polarized dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 443-447, Mar. 2020, doi: 10.1109/LAWP.2020.2970171.
    doi:10.1109/LAWP.2020.2970171

    9. Khidre, A., K. Lee, F. Yang, and A. Z. Elsherbeni, "Circular polarization reconfigurable wideband e- shaped patch antenna for wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 960-964, Feb. 2013, doi: 10.1109/TAP.2012.2223436.
    doi:10.1109/TAP.2012.2223436

    10. Qin, P.-Y., A. R. Weily, Y. J. Guo, and C.-H. Liang, "Polarization reconfigurable U-slot patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3383-3388, Oct. 2010, doi: 10.1109/TAP.2010.2055808.
    doi:10.1109/TAP.2010.2055808

    11. Saravanan, M. and M. J. S. Rangachar, "Polarization reconfigurable square patch antenna for wireless communications," AEM, Vol. 7, No. 4, 103-108, Sep. 2018.
    doi:10.7716/aem.v7i4.805

    12. Yang, X., B. Wang, W. Wu, and S. Xiao, "Yagi patch antenna with dual-band and pattern reconfigurable characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 168-171, 2007, doi: 10.1109/LAWP.2007.895292.
    doi:10.1109/LAWP.2007.895292

    13. Nguyen-Trong, N., L. Hall, and C. Fumeaux, "A frequency- and pattern-reconfigurable center- shorted microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1955-1958, 2016, doi: 10.1109/LAWP.2016.2544943.
    doi:10.1109/LAWP.2016.2544943

    14. Tirunagari, A., B. Madhav, C. V. Kumar, P. Sruthi, M. Sahithi, and K. V. Manikanta, "Design of a frequency reconfigurable fractal antenna for Internet of Things (IoT) in vehicular communication," International Journal of Recent Technology and Engineering, Vol. 7, 1605-1611, Mar. 2019.

    15. Kaur, P., A. De, and S. K. Aggarwal, "Design of a novel reconfigurable fractal antenna for multi-band application," International Journal of Advanced Science and Technology, Vol. 62, 103-112, 2014.
    doi:10.14257/ijast.2014.62.08

    16. Chaouche, Y. B., F. Bouttout, I. Messaoudene, L. Pichon, M. Belazzoug, and F. Chetouah, "Design of reconfigurable fractal antenna using pin diode switch for wireless applications," 2016 16th Mediterranean Microwave Symposium (MMS), 1-4, 2016, doi: 10.1109/MMS.2016.7803852.

    17. Chaouche, Y. B., M. Nedil, and I. Messaoudene, "A bandwidth reconfigurable multiband fractal antenna for wireless applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 917-918, 2019, doi: 10.1109/APUS-NCURSINRSM.2019.8889345.
    doi:10.1109/APUSNCURSINRSM.2019.8889345

    18. Balanis, C. A., Antenna Theory, Analysis and Design, John Wiley and Sons, 2005.

    19. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, London, 2003.

    20., , https://www.nxp.com/docs/en/data-sheet/BAP50-03.pdf.

    21. Singh, A., M. Aneesh, Kamakshi, and J. A. Ansari, "Analysis of microstrip line fed patch antenna for wireless communications," Open Engineering, Vol. 7, No. 1, 279-286, 2017.
    doi:10.1515/eng-2017-0034

    22. Singh, A., J. A. Ansari, Kamakshi, M. Aneesh, S. S. Sayeed, and A. Mishra, "Analysis of slots and notches loaded patch antenna for dualband operation," IMPACT-2013, 168-171, 2013, doi: 10.1109/MSPCT.2013.6782111.
    doi:10.1109/MSPCT.2013.6782111

    23. Ansari, J. A., et al., "Analysis of L-shaped slot loaded circular disk patch antenna for satellite and radio telecommunication," Wireless Personal Communications, Vol. 70, 927-943, 2013.
    doi:10.1007/s11277-012-0730-3

    24. Ansari, J. A., A. Mishra, and N. P. Yadav, "Analysis of U-shaped slot loaded circular disk antenna for dualband operation," International Journal of Electical Engineering and Embedded Systems, Vol. 3, 73-77, 2011.

    25. Ansari, J. A. and R. B. Ram, "Analysis of broad band U-slot microstrip patch antenna," Microwave and Optical Technology Letters, Vol. 50, No. 4, 1069-1073, Feb. 2008.
    doi:10.1002/mop.23274

    26. Tiwari, D., J. A. Ansari, M. G. Siddiqui, and A. K. Saroj, "Analysis of modified square sierpinski gasket fractal microstrip antenna for wireless communications," AEU --- International Journal of Electronics and Communication, Vol. 94, 377-385, 2018.

    27. Tiwari, D., J. A. Ansari, A. K. Saroj, and M. Kumar, "Analysis of a Miniaturized Hexagonal Sierpinski Gasket fractal microstrip antenna for modern wireless communications," AEU --- International Journal of Electronics and Communication, Vol. 123, 153288, Aug. 2020.
    doi:10.1016/j.aeue.2020.153288