Vol. 124
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-22
Sensitivity Estimation of a Planar Optical Waveguide Using Broadband Difference Interferometeric Principle for Detection of Hemoglobin Concentration in Blood
By
Progress In Electromagnetics Research C, Vol. 124, 167-177, 2022
Abstract
Broadband differences interferometeric analysis of a three-layer planar polymer optical waveguide is proposed and optimized to detect the concentration of hemoglobin in blood. The dispersion characteristic and cutoff film thickness of proposed waveguide are obtained by matching the field at various boundaries. The obtained cutoff film thickness for TE0 and TM0 modes is 0.09 µm, 0.1 µm at operating wavelength 400 nm, and 0.19 µm and 0.23 µm at operating wavelength 800 nm, respectively. The effective refractive indices of TE0 and TM0 modes are obtained at two considered wavelength i.e. 400 nm and 800 nm, and hence the difference of their propagation constant is calculated. It is observed that the propagation constant of these modes decreases with the increase of wavelength. Also, the difference of propagation constant attains its maximum value at certain wavelength and decreases either side of this wavelength. The interference maxima signals at output are considered as sensing signal. The maxima of interference signals, close to the maximum value of propagation constant, are shifted sufficiently with the change in cover refractive index. The maximum sensitivity 3.8 nm/RIU is obtained in the proposed broadband differences interferometeric analysis of waveguide at film thickness 300 nm. Hence, at this film thickness the sensing signal changes by 0.68 nm/g/L of hemoglobin concentration in blood.
Citation
Abhishek Upadhyay, Chandan Singh Yadav, Gulab Chand Yadav, Shishu Pal Singh, and Vivek Singh, "Sensitivity Estimation of a Planar Optical Waveguide Using Broadband Difference Interferometeric Principle for Detection of Hemoglobin Concentration in Blood," Progress In Electromagnetics Research C, Vol. 124, 167-177, 2022.
doi:10.2528/PIERC22072603
References

1. Du, H., Z. Li, Y. Wang, Q. Yang, and W. Wu, "Nanomaterial-based optical biosensors for the detection of foodborne bacteria," Food Reviews International, Vol. 38, No. 4, 655-684, 2020, doi: 10.1080/87559129.2020.1740733.
doi:10.1080/87559129.2020.1740733

2. Singh, V. and D. Kumar, "Theoretical modeling of a metal-clad planar waveguide based biosensors for the detection of pseudomonas-like bacteria," Progress In Electromagnetics Research M, Vol. 6, 167-184, 2009.

3. Samson, R., G. R. Navale, and M. S. Dharne, "Biosensors: Frontiers in rapid detection of COVID-19," 3 Biotech, Vol. 10, No. 385, 1-9, 2020, doi: 10.1007/S13205-020-02369-0.

4. Liu, N., S. Wang, J. Wang, J. Lv, Q. Cheng, W. Ma, and Y. Lu, "Dual-band reflective optical sensor based on GMR-TPS structure to detect the hemoglobin," IEEE Sensors Journal, Vol. 22, No. 13, 13529-13535, 2022, doi: 10.1109/JSEN.2022.3179010.
doi:10.1109/JSEN.2022.3179010

5. Beutler, E. and J. Waalen, "The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration?," Blood, Vol. 107, 1747-1750, 2006, doi: 10.1182/BLOOD-2005-07-3046.
doi:10.1182/blood-2005-07-3046

6. Friebel, M. and M. Meinke, "Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration," Applied Optics, Vol. 45, No. 12, 2838-2842, 2006, doi: 10.1364/AO.45.002838.
doi:10.1364/AO.45.002838

7. Peltomaa, R., B. Glahn-Martínez, E. Benito-Peña, and M. C. Moreno-Bondi, "Optical biosensors for label-free detection of small molecules," Sensors, Vol. 18, No. 4126, 1-46, 2018, doi: 10.3390/S18124126.

8. Liu, X., Y. Gu, C. Huang, M. Zhao, Y. Cheng, E. G. A. Jawdeh, H. S. Bada, L. Chen, and G. Yu, "Simultaneous measurements of tissue blood flow and oxygenation using a wearable fiber-free optical sensor," J. of Biomedical Optics, Vol. 26, No. 1, 012705, 2021, doi: 10.1117/1.JBO.1.012705.
doi:10.1117/1.JBO.26.1.012705

9. Goodrich, T. T., H. J. Lee, and R. M. Corn, "Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays," J. Am. Chem. Soc., Vol. 126, 4086-4087, 2004, doi: 10.1021/ja039823p.
doi:10.1021/ja039823p

10. Bahadoran, M., A. K. Seyfari, P. Sanati, and L. S. Chua, "Label free identification of the different status of anemia disease using optimized double-slot cascaded microring resonator," Scientific Reports, Vol. 12, No. 5548, 2022, doi: 10.1038/s41598-022-09504-2.

11. Kitsara, M., K. Misiakos, I. Raptis, and E. Makarona, "Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing," Optics Express, Vol. 18, 8193, 2010, doi: 10.1364/oe.18.008193.
doi:10.1364/OE.18.008193

12. Lu, J., C. M. Strohsahl, B. L. Miller, and L. J. Rothberg, "Reflective interferometric detection of label-free oligonucleotides," Analytical Chemistry, Vol. 76, 4416-4420, 2004, doi: 10.1021/ac0499165.
doi:10.1021/ac0499165

13. Calo, G., A. Farinola, and V. Petruzzelli, "Design and optimization of high sensitivity photonic interferometric biosensors on polymeric waveguides," Progress In Electromagnetics Research Letters, Vol. 33, 151-166, 2012.
doi:10.2528/PIERL12051303

14. Kozma, P., F. Kehl, E. Ehrentreich-Förster, C. Stamm, and F. F. Bier, "Integrated planar optical waveguide interferometer biosensors: A comparative review," Biosensors and Bioelectronics, Vol. 58, 287-307, 2014, doi: 10.1016/j.bios.2014.02.049.
doi:10.1016/j.bios.2014.02.049

15. Xie, Y., M. Zhang, and D. Dai, "Design rule of Mach-Zehnder interferometer sensors for ultra-high sensitivity," Sensors (Switzerland), Vol. 20, 1-8, 2020, doi: 10.3390/s20092640.

16. Wang, F., S. Ma, T. Ma, X. Wang, K. Yu, and L. Li, "Refractive index sensing performances of a mid-infrared asymmetric MZI based on suspended GaAs waveguides," Progress In Electromagnetics Research M, Vol. 111, 173-183, 2022.
doi:10.2528/PIERM22033101

17. Casquel, R., M. Holgado, M. F. Laguna, A. L. Hernández, B. Santamaría, Á. Lavín, L. Tramarin, and P. Herreros, "Engineering vertically interrogated interferometric sensors for optical label-free biosensing," Analytical and Bioanalytical Chemistry, Vol. 412, 3285-3297, 2020, doi: 10.1007/S00216-020-02411-3.
doi:10.1007/s00216-020-02411-3

18. Savra, E., A. Malainou, A. Salapatas, A. Botsialas, P. Petrou, I. Raptis, E. Makarona, S. E. Kakabakos, and K. Misiakos, "Monolithically-integrated Young interferometers for label-free and multiplexed detection of biomolecules," Silicon Photonics XI, Vol. 9752, 97520N, 2016, doi: 10.1117/12.2209011.

19. Makarona, E., A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, E. Stavra, A. Malainou, and K. Misiakos, "Broadband Young interferometry for simultaneous dual polarization bioanalytics," J. Opt. Soc. Am. B, Vol. 34, 1691, 2017, doi: 10.1364/josab.34.001691.
doi:10.1364/JOSAB.34.001691

20. Dyson, J., "Very stable common-path interferometers and applications," J. Opt. Soc. Am., Vol. 53, 690, 1963, doi: 10.1364/josa.53.000690.
doi:10.1364/JOSA.53.000690

21. Stamm, C. and W. Lukosz, "Integrated optical difference interferometer as immunosensor," Sensors and Actuators B: Chemical, Vol. 31, 203-207, 1996, doi: 10.1016/0925-4005(96)80067-0.
doi:10.1016/0925-4005(96)80067-0

22. Tyszkiewicz, C., T. Pustelny, and T. Pustelny, "Differential interferometry in planar waveguide structures with ferronematic layer Special Issue ``Design and Application of Modern Evanescent Wave Photonic Sensors" in special the issue of Photonics (ISSN 2304-6732) View project maciej.setkiewicz@polsl.pl View project 56 PUBLICATIONS 307 CITATIONS SEE PROFILE Differential interferometry in planar waveguide structures with ferronematic layer," Optica Applicata, Vol. XXXIV, 2004.

23. Boudrioua, A., "Photonic waveguides: Theory and applications," Photonic Waveguides: Theory and Applications, Wiley-ISTE, 2009, doi: 10.1002/9780470611142.

24. El-Agez, T. and S. Taya, "Theoretical spectroscopic scan of the sensitivity of asymmetric slab waveguide sensors," Optica Applicata, Vol. 41, 90-95, 2011.

25. Lukosz, W. and C. Stamm, "Integrated optical interferometer as relative humidity sensor and differential refractometer," Sensors and Actuators A: Physical, Vol. 25, 185-188, 1990, doi: 10.1016/0924-4247(90)87029-I.
doi:10.1016/0924-4247(90)87029-I

26. Stamm, C. and W. Lukosz, "Integrated optical difference interferometer as refractometer and chemical sensor," Sensors and Actuators B: Chemical, Vol. 11, 177-181, 1993, doi: 10.1016/0925-4005(93)85252-6.
doi:10.1016/0925-4005(93)85252-6

27. Daimon, M. and A. Masumura, "Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region," Applied Optics, Vol. 46, 3811-3820, 2007, doi: 10.1364/AO.46.003811.
doi:10.1364/AO.46.003811