Vol. 1
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-11-26
Improving of Shielding Effectiveness of a Rectangular Metallic Enclosure with Aperture by Using Extra Wall
By
Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008
Abstract
A new method for improving shielding effectiveness (SE) of a rectangular enclosure with multiple apertures has been proposed. In this method in order to compensate the effects of the apertures on reduction of (SE) parameter, instead of the one wall, two metallic walls containing apertures has been used. The numerical simulation uses a symmetric condensed node of TLM-TD (Transmission line Modeling Method-Time Domain) and subsequent Fourier Transform. The shielding effectiveness response to an electric field impulsive excitation is obtained. A study of the influence of the place of apertures in the walls and the distance between the two walls is presented.
Citation
Mehdi Bahadorzadeh Ghandehari, Mohammad Naser-Moghadasi, and Amir Attari, "Improving of Shielding Effectiveness of a Rectangular Metallic Enclosure with Aperture by Using Extra Wall," Progress In Electromagnetics Research Letters, Vol. 1, 45-50, 2008.
doi:10.2528/PIERL07110706
References

1. Cerri, G., R. D. Leo, V. M. Primiani, and M. Righetti, "Field penetration into metallic enclosures through slots excited by ESD," IEEE Trans. Electromagnetic Compatibility, Vol. EMC-36, No. 2, 110-116, May.1999.

2. Qian, Z. H., R. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901

3. Cerri, G., R. D. Leo, and V. M. Primiani, "Theoretical and experimental evaluation of the electromagnetic radiation from apertures in shielded enclosures," IEEE Trans. Electromagnetic Compatibility, Vol. EMC-34, No. 4, 423-432, November 1992.

4. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301

5. Matsushima, A., Y. Nakamura, and S. Tomino, "Application of integral equation method to metal-plate lens structures," Progress In Electromagnetics Research, Vol. 54, 245-262, 2005.
doi:10.2528/PIER05011401

6. Edrisi, M. and W. K. Chan, "EMC methodology for numerical electric field computation inside enclosure with aperture," Electronics Letters, Vol. 35, 1233-1235, 1999.
doi:10.1049/el:19990874

7. Zhou, X. and G. W. Pan, "Application of Physical Spline Finite Element Method (PSFEM) to fullwave analysis of waveguides," Progress In Electromagnetics Research, Vol. 60, 19-41, 2006.
doi:10.2528/PIER05081102

8. Chou, H.-T. and H.-T. Hsu, "Hybridization of simulation codes based on numerical high and low frequency techniques for the efficient antenna design in the presence of electrically large and complex structures," Progress In Electromagnetics Research, Vol. 78, 173-187, 2008.
doi:10.2528/PIER07091104

9. Attari, A. R. and K. Barkeshli, "Application of the transmission line matrix method to the calculation of the shielding effectiveness for metallic enclosures,", Palais des congres Acropolis, Nice, France, November 12-14.2002.

10. SiIveira, J. L., S. Benhassine, L. Pichon, and A. Raizer, "Analysis of the shielding effectiveness of a rectangular enclosure with apertures by TLM-TD," Fourth International Conference on Computation in Electromagnetic (CEM 2002), Bournemouth, UK, 8-11 April 2002.