Vol. 1
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2007-12-21
Electronic Spectrum Study of Parabolic GaAs /Al_{X}Ga_{1-X}as Superlattices
By
Progress In Electromagnetics Research Letters, Vol. 1, 237-243, 2008
Abstract
The electronic structure of finite parabolic GaAs/AlxGa1-xAs superlattices is studied. A detailed analysis of the miniband formation is given and the importance of all system parameters is discussed. The dependence of the equidistant miniband separation on the superlattice size is revealed. A comparison with different theoretical methods and experimental data is presented. The calculations are conducted in the framework of the semi-empirical sp3s* tight-binding model including spin applying the Green function formalism and the Surface Green Function Matching Method (SGFM) method.
Citation
Isaac Rodríguez-Vargas, O. Y. Sanchez-Barbosa, David Armando Contreras-Solorio, and Stoyan Vlaev, "Electronic Spectrum Study of Parabolic GaAs /Al_{X}Ga_{1-X}as Superlattices," Progress In Electromagnetics Research Letters, Vol. 1, 237-243, 2008.
doi:10.2528/PIERL07120608
References

1. Miller, R. C., A. C. Gossard, D. A. Kleinman, and O. Munteanu, "Parabolic quantum wells with the GaAs-AlxGa1-xAs system," Phys. Rev. B, Vol. 29, No. 6, 3740-3743, 1984.
doi:10.1103/PhysRevB.29.3740

2. Menendez, J. and A. Pinczuk, "Light scattering determinations of band offsets in semiconductor heterostructures," IEEE Journal of Quantum Electronics, Vol. 24, No. 8, 1698-1711, 1988.
doi:10.1109/3.7100

3. Yuen, W.-P., "Exact analytic analysis of finite parabolic quantum wells with and without a static electric field," Phys. Rev. B, Vol. 48, No. 23, 17316-17320, 1993.
doi:10.1103/PhysRevB.48.17316

4. Shen, W. P. and M. L. Rustgi, "Two coupled parabolic wells under an electric field," J. Appl. Phys., Vol. 74, No. 6, 4006-4014, 1993.
doi:10.1063/1.354444

5. Vlaev, S., V. R. Velasco, and F. Garcia-Moliner, "Tight-binding calculation of electronic states in an inverse parabolic quantum well," Phys. Rev. B, Vol. 51, No. 11, 7321-7324, 1995.
doi:10.1103/PhysRevB.51.7321

6. Choy, W. C. and E. H. Li, "Polarization-insensitive electroabsorption by use of quantum well interdiffusion," Appl. Opt., Vol. 37, No. 9, 1674-1681, 1998.
doi:10.1364/AO.37.001674

7. Maranowski, K. D. and A. C. Gossard, "Far-infrared electroluminescence from parabolic quantum well superlattices excited by resonant tunneling injection," J. Appl. Phys., Vol. 88, No. 1, 172-177, 2000.
doi:10.1063/1.373638

8. Kohn, W., "Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas," Phys. Rev., Vol. 123, No. 4, 1242-1244, 1961.
doi:10.1103/PhysRev.123.1242

9. Brey, L., N. F. Johnson, and B. Halperin, "Optical and magnetooptical absorption in parabolic quantum wells," Phys. Rev. B, Vol. 40, No. 15, 10647-10649, 1989.
doi:10.1103/PhysRevB.40.10647

10. Wang, G. -H., Q. Guo, and K.-X. Guo, "Third-order nonlinear optical properties of parabolic and semiparabolic quantum wells," Phys. Stat. Sol. (B), Vol. 238, No. 1, 75-80, 2003.
doi:10.1002/pssb.200301753

11. Zhang, L. and H.-J. Xie, "Electric field effect on the secondorder nonlinear optical properties of parabolic and semiparabolic quantum wells," Phys. Rev. B, Vol. 68, No. 23, 235315, 2003.

12. Sergio, C. S., G. M. Gusev, J. R. Leite, E. B. Olshanetskii, A. A. Bykov, N. T. Moshegov, A. K. Bakarov, A. I. Toropov, D. K. Maude, O. Estibal, and J. C. Portal, "Coexistence of a twoand three-dimensional Landau states in a wide parabolic quantum well," Phys. Rev. B, Vol. 64, No. 11, 115314, 2001.

13. Gusev, G. M., A. A. Quivy, T. E. Lamas, J. R. Leite, O. Estibals, and J. C. Portal, "Quantum hall ferromagnet in a parabolic well," Phys. Rev. B, Vol. 67, No. 15, 155313, 2003.

14. Bratschitsch, R., T. Muller, R. Kersting, G. Strasser, and K. Unterrainer, "Coherent terahertz emission from optically pumped intersubband plasmons in parabolic quantum wells," Appl. Phys. Lett., Vol. 76, No. 24, 3501-3503, 2000.
doi:10.1063/1.126687

15. Gusev, G. M., A. A. Quivy, T. E. Lamas, J. R. Leite, O. Estibals, and J. C. Portal, "Transport of the quasi-three-dimensional hole gas in a magnetic field in the ultra-quantum limit," Physica E, Vol. 22, No. 1–3, 336–340, 2004.

16. Da Cuhna Lima, I. C., G. M. Gusev, and J. R. Leite, "Spin polarization by tilted magnetic field in wide Ga1-xAlxAs parabolic quantum wells," Journal of Superconductivity, Vol. 18, No. 2, 169-173, 2005.
doi:10.1007/s10948-005-3354-y

17. Efros, A. L. and E. I. Rashba, "Theory of electric dipole spin resonance in a parabolic quantum well," Phys. Rev. B, Vol. 73, No. 16, 165325, 2006.

18. Chung, S. J., N. Dai, G. A. Khodaparast, J. L. Hicks, K. J. Goldammer, F. Brown, W. K. Liu, R. E. Doezema, S. Q. Murphy, and M. B. Santos, "Electronic characterization of InSb quantum wells," Physica E, Vol. 7, No. 3–4, 809–813, 2000.

19. Ekpunobi, A. J. and A. O. E. Animalu, "Band offsets and properties of AlGaAs/GaAs and AlGaN/GaN material systems," Superlattices and Microstructures, Vol. 31, No. 5, 247-252, 2002.
doi:10.1006/spmi.2002.1042

20. Vlaev, S. J., I. Rodriguez-Vargas, L. M. Gaggero-Sager, and V. R. Velasco, "An alternative way of calculating the superlattice Green function for discrete media," Surf. Sci., Vol. 554, No. 2–3, 245–252, 2004.

21. Garcia-Moliner, F. and V. R. Velasco, Theory of Single and Multiple Interfaces: The Method of Surface Green Function Matching, Word Scientific, Singapore, 1993.

22. Vlaev, S., V. R. Velasco, and F. Garcia-Moliner, "Electronic states in graded-composition heterostructures," Phys. Rev. B, Vol. 49, No. 16, 11222-11229, 1994.
doi:10.1103/PhysRevB.49.11222

23. Vlaev, S. and D. A. Contreras-Solorio, "Electronic states in diffused quantum wells," J. Appl. Phys., Vol. 82, No. 8, 3853-3856, 1997.
doi:10.1063/1.365750