Vol. 2
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2008-01-31
Wide Scanning Phased Array Antenna Using Printed Dipole Antennas with Parasitic Element
By
Progress In Electromagnetics Research Letters, Vol. 2, 187-193, 2008
Abstract
active phased array antenna has been developed that is capable of wide scanning angle with small deviation in antenna gain using printed dipole antennas with parasitic element, which may have the capability of adjusting the influence of mutual coupling in the array element pattern. The design of the parasitic element is examined and the effect of its shape on pattern characteristics is confirmed. Beam scanning angles of 58 degrees in the φ= 0 plane were obtained for each array antenna pattern.
Citation
Hong-Wei Yuan, Shu-Xi Gong, Peng-Fei Zhang, and Xing Wang, "Wide Scanning Phased Array Antenna Using Printed Dipole Antennas with Parasitic Element," Progress In Electromagnetics Research Letters, Vol. 2, 187-193, 2008.
doi:10.2528/PIERL08011602
References

1. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications ," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
doi:10.2528/PIER06012001

2. Edward, B. J., D. R. Helms, R. S. Webb, and S. Weinreb, "W-band active transmit and receive phased array antenna," IEEE MTT-S Int. Microw. Symp. Dig., 1095-1098, 1995.

3. Kim, D., M. Kim, M. Tanaka, and K. Matsugatani, "A microstrip antenna using patch array resonator," Microwave and Optical Technology Letters, Vol. 49, No. 12, December 2007.

4. Butterworth, J. C., "A high power coherent 95 GHz radar (hipcor-95)," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 499-502, 1987.

5. Pazoki, R. and J. Rashed-Mohassel, "Bandwidth enhancement of resonant slot array antennas," Microwave and Optical Technology Letters, Vol. 21, No. 9, 1177-1189, December 2007.

6. Sayem, A. M. and M. Ali, "Characteristics of a microstrip-FED miniature printed Hilbert slot antenna," Progress In Electromagnetics Research, Vol. 56, 1-18, 2006.
doi:10.2528/PIER05041801

7. Chair, R., A. A. Kishk, K.-F. Lee, C. E. Smith, and D. Kajfez, "“Microstrip line and CPW FED ultra wideband slot antennas with U-shaped tuning stub and reflector," Progress In Electromagnetics Research, Vol. 56, 163-182, 2006.
doi:10.2528/PIER05060701

8. Wei, W.-B., Q.-Z. Liu, Y.-Z. Yin, and H.-J. Zhou, "Reconfigurable microstrip patch antenna with switchable polarization," Progress In Electromagnetics Research, Vol. 75, 63-68, 2007.
doi:10.2528/PIER07053002

9. Chen, K., X. Chen, and K. Huang, "A novel microstrip dipole antenna with widerband and end-fire properties," Microwave and Optical Technology Letters, Vol. 21, No. 12, 1679-1688, December 2007.

10. He, Q.-Q. and B.-Z. Wang, "Radiation patterns synthesis for a conformal dipole antenna array," Progress In Electromagnetics Research, Vol. 76, 327-340, 2007.
doi:10.2528/PIER07071801

11. Mizutani, H., M. Funabashi, and M. Kuzuhara, "GHz small-size HJFET MMIC switch for high power applications," IEEE AP-S Symp. Digest, Vol. C-50, 949-952, 1995.

12. Kuwahara, Y., Y. Kadowaki, and K. Matsumoto, "Array element pattern shaping by a parasitic element," IEEE AP-S Symp. Digest, Vol. 2, 934-937, 1995.
doi:10.1109/APS.1995.530171

13. He, Q.-Q. and B.-Z. Wang, "Design of microstrip array antenna by using active element pattern technique combining with Taylor synthesis method," Progress In Electromagnetics Research, Vol. 80, 63-76, 2008.
doi:10.2528/PIER07103006

14. Yuan, H.-W., S.-X. Gong, X.Wang, and W.-T.Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302