Vol. 3

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-03-19

Analysis of Pyramid EM Wave Absorber by FDTD Method and Comparing with Capacitance and Homogenization Methods

By Amineh Khajehpour and Seyed Mirtaheri
Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008
doi:10.2528/PIERL08021802

Abstract

In this paper, we model an array of pyramid electromagnetic wave absorbers and calculate the return loss of this array using the FDTD method. For modeling the frequency dependent of the absorber, the Debye model is used. In doing so, a 3 × 3 structure of nine pyramid absorber is chosen instead of the array. The results are compared with capacitance and homogenization methods using average values for ε [10]. The results clearly show that the FDTD is an accurate method for calculating the return loss of an array of pyramid absorbers as compared with three other existing methods, and can be used to simulate the array of pyramid absorbers with different sizes in a wide range of frequencies.

Citation


Amineh Khajehpour and Seyed Mirtaheri, "Analysis of Pyramid EM Wave Absorber by FDTD Method and Comparing with Capacitance and Homogenization Methods," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERL08021802
http://www.jpier.org/PIERL/pier.php?paper=08021802

References


    1. Chambers, B., "Characteristics of radar absorbers with tapered thickness," IEEE Conf. Antennas and Propagation, Apr. 1999.

    2. Miyazaki, Y. and K. Tanoue, "Tapered and graded index type electromagnetic absorbers using inhomogeneous loss dielectric layer," EMC’89, Vol. 2, Nagoya, Japan, Sept. 1989.

    3. Smith, F. C., "Effective permittivity of dielectric honeycombs," IEEE Proc. Microw. Antennas and Propagation, Vol. 146, No. 1, Feb. 1999.

    4. Park, M. J., J. Choi, and S. S. Kim, "Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders," IEEE Trans. Magnetics, Vol. 36, No. 5, Sep. 2000.

    5. Emerson, W. H., "Electromagnetic absorbers and anechoic chambers through the years," IEEE Trans. Antennas and Propagation, Vol. 21, No. 4, July 1973.

    6. Chung, B.-K. and H.-T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
    doi:10.2528/PIER03052601

    7. Marquart, N. P., "Experimental anechoic chamber measurements of a target near an interface," Progress In Electromagnetics Research, Vol. 61, 143-158, 2006.
    doi:10.2528/PIER06031003

    8. Anzai, H., Y. Noito, and T. Mizumoto, "Analysis of pyramid EM wave absorber," Technical Report of IEICE, EMCJ 94-27, Sept.1994.

    9. Kuester, E. F. and C. L. Holloway, "A low frequency model for wedge or pyramid absorber array — I: Theory," IEEE Trans. Electromag. Compat., Vol. 36, 300-306, Nov. 1994.
    doi:10.1109/15.328859

    10. Kuester, E. F. and C. L. Holloway, "A low frequency model for wedge or pyramid absorber array—II: Computed and measured," IEEE Trans. Electromag. Compat., Vol. 36, 307-313, Nov. 1994.

    11. Simovski, C. R., B. Sauviac, and S. L. Prosvirnin, "Homogenization of an array of S-shaped particles located on a dielectric interface," Progress In Electromagnetics Research, Vol. 39, 249-264, 2003.
    doi:10.2528/PIER02093001

    12. Toflove, A., Computational Electrodynamics, the Finite Difference Time Domain Method, Artech House, Norwood, MA, 1995.

    13. Holloway, C. L., P. M. McKenna, R. A. Dalke, R. A. Perala, and C. L. Devor, "Time-domain modeling, characterization and measurements of anechoic and semi-anechoic electromagnetic test chambers," IEEE Trans. Electromag. Compat., Vol. 44, No. 1, Feb. 2002.
    doi:10.1109/15.990732

    14. Hu, X.-J. and D. -B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
    doi:10.2528/PIER07101902

    15. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
    doi:10.2528/PIERB07112803

    16. Gong, Z. Q. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
    doi:10.2528/PIER06071301

    17. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
    doi:10.2528/PIER02021703

    18. Kumar, A. and S. Sharma, "Measurement of dielectric constant and loss factor of the dielectric material at microwave requencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
    doi:10.2528/PIER06111204

    19. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "Scattering computation from the target with lossy background," Progress In Electromagnetics Research, Vol. 57, 151-163, 2006.
    doi:10.2528/PIER05070503

    20. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbent textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
    doi:10.2528/PIERB07121702

    21. Khalaj-Amirhosseini, M., "Identification of inhomogeneous or multilayer dielectric walls," Progress In Electromagnetics Research, Vol. 78, 39-48, 2008.
    doi:10.2528/PIER07082703

    22. Khalaj-Amirhosseini, M., "Analysis of lossy inhomogeneous planar layers using finite difference method," Progress In Electromagnetics Research, Vol. 59, 187-198, 2006.

    23. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
    doi:10.2528/PIERL07112503

    24. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. AP., Vol. 14, No. 4, 302-307, 1966.