Vol. 4

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-06-30

Simulation Research on Turbo Equlization Algorithm Based on Microwave Fading Channel

By S.-X. Guo, Y. Gao, and Lin-Xi Zhang
Progress In Electromagnetics Research Letters, Vol. 4, 99-107, 2008
doi:10.2528/PIERL08051802

Abstract

Turbo equalization is applied to microwave channel in this paper, and we bring forward an improved Turbo equalization algorithm named Max-Log-Map. A simulation based on a given microwave fading channel has been made. The results show that performances are close to each other between improved TE-Max-Log-Map and Log-Map, and the coding gain is 1 dB at 10-4 of BER compared with Max-Log- Map. The improved Max-Log-Map method improves the reliability of microwave communication.

Citation


S.-X. Guo, Y. Gao, and Lin-Xi Zhang, "Simulation Research on Turbo Equlization Algorithm Based on Microwave Fading Channel," Progress In Electromagnetics Research Letters, Vol. 4, 99-107, 2008.
doi:10.2528/PIERL08051802
http://www.jpier.org/PIERL/pier.php?paper=08051802

References


    1. Dybdal, R. B., "Radar cross section measurements," IEEE Trans. on Antennas and Propagation, Vol. 75, No. 4, 498-516, 1987.

    2. Kent, B. M., "Comparative measurements of precision radar cross section (RCS) calibration targets," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 412-415, 2001.

    3. Mallahzadeh, A. R., M. Soleimani, and J. Rashed-Mohassel, "RCS computation of airplane using parabolic equation," Progress In Electromagnetics Research, Vol. 57, 265-276, 2006.
    doi:10.2528/PIER05080101

    4. Knott, E. F., et al., Radar Cross Section, Artech House, Inc., Dedham, MA, 1985.

    5. Marquart, N. P., "Experimental anechoic chamber measurements of a target near an interface," Progress In Electromagnetics Research, Vol. 61, 143-158, 2006.
    doi:10.2528/PIER06031003

    6. Gelius, L. J., "Electromagnetic scattering approximations revisited," Progress In Electromagnetics Research, Vol. 76, 75-94, 2007.
    doi:10.2528/PIER07062501

    7. Johnson, R. C., "Compact range techniques and measurements," IEEE Trans. on Antenna and Propagation, Vol. 17, No. 5, 568-576, 1969.
    doi:10.1109/TAP.1969.1139517

    8. Kouyoumjian, R. G., "Range requirements in radar cross section measurements," IEEE. Proc., Vol. 53, 920-928, 1965.
    doi:10.1109/PROC.1965.4070

    9. Brumley, S. S., "Extending the low-frequency limits of the compact-range reflector," IEEE Antennas & Propagation, Vol. 38, No. 3, 81-85, 1996.
    doi:10.1109/74.511960

    10. Censor, D., "Free-space relativistic low-frequency scattering by moving objects," Progress In Electromagnetics Research, Vol. 72, 195-214, 2007.
    doi:10.2528/PIER07030702

    11. Ott, R. H., "Electromagnetic scattering by buried objects in the HF/VHF/UHF frequency bands," Progress In Electromagnetics Research, Vol. 12, 371-419, 1996.

    12. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Am., Vol. 52, 116-130, 1962.
    doi:10.1364/JOSA.52.000116

    13. Attiya, A. M. and E. El-Diwany, "A time domain incremental theory of diffraction: Scattering of electromagnetic pulsed plane waves," Progress In Electromagnetics Research, Vol. 44, 81-101, 2004.
    doi:10.2528/PIER03032001

    14. Hu, C. F., et al., "Application of DSP in the step-frequency RCS Application of DSP in the step-frequency RCS measurement system ," PIERS Online, Vol. 4, No. 1, 77-80, 2008.

    15. Wenher, D. R., High Resolution Radar, Artech House, London, 1987.

    16. Teng, L., et al., "High range resolution performance of frequency stepped radar signal," CIE Inter. Conf. of Radar, 242-245, 1996.

    17. Weedon, W. H., "A step-frequency radar imaging system for microwave nondestructive evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
    doi:10.2528/PIER99062501

    18. Connolly, T. M. and E. J. Luoma, "Microwave absorbers,", U.S. Patent No. 4,038, 660, July 26, 1977.

    19. Chung, B. K. and H. T. Chuah, "Modeling of RF absorber for application in the design of anechoic chamber," Progress In Electromagnetics Research, Vol. 43, 273-285, 2003.
    doi:10.2528/PIER03052601

    20. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objectives particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
    doi:10.2528/PIER07101702

    21. Xiao, S. Q., J. Chen, B. Z. Wang, and X. F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
    doi:10.2528/PIER07082501

    22. Plonus, M. A., "Theoretical investigation of scattering from plastic foams," IEEE Trans. on Antennas and Propagation, Vol. 13, 88-93, 1965.
    doi:10.1109/TAP.1965.1138379

    23. Bracewell, R. N., The Fourier Transform and Its Applications, 2nd edition, McGraw-Hill, New York, 1986.

    24. Brigham, E. O., The Fast Fourier Transform and Its Applications, Prentice-Hall, Englewood Cliffs, NJ, 1988.

    25. Talbi, L. and G. Y. Delisle, "Finite difference time domain characterization of indoor radio propagation," Progress In Electromagnetics Research, Vol. 12, 251-275, 1996.

    26. Khadem-Hosseinieh, B., Y. Komijani, R. Faraji-Dana, and M. Shahabadi, "Using photon wave function for the timedomain analysis of electromagnetic wave scattering," Progress In Electromagnetics Research, Vol. 76, 397-412, 2007.
    doi:10.2528/PIER07062101

    27. Harris, F. J., "On the use of windows for harmonic analysis with the discrete Fourier transform ," Proc. IEEE, Vol. 66, No. 1, 51-83, 1977.
    doi:10.1109/PROC.1978.10837