Vol. 4

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-10-31

A Novel Radiation Pattern and Frequency Reconfigurable Microstrip Antenna on a Thin Substrate for Wide-Band and Wide-Angle Scanning Application

By Jun Ou Yang
Progress In Electromagnetics Research Letters, Vol. 4, 167-172, 2008
doi:10.2528/PIERL08101201

Abstract

A novel radiation pattern and frequency reconfigurable microstrip antenna is introduced in this paper. This antenna is designed on a thin substrate for the application of conformal phased antenna future. The proposed antenna make the operating frequency range 6 times larger than that of a simple rectangular microstrip antenna, and make the beam covering from -70∼70 compared with the traditional rectangular microstrip antenna beam which only covers -50∼50. It is potential on the application of wide-band and wideangle.

Citation


Jun Ou Yang, "A Novel Radiation Pattern and Frequency Reconfigurable Microstrip Antenna on a Thin Substrate for Wide-Band and Wide-Angle Scanning Application," Progress In Electromagnetics Research Letters, Vol. 4, 167-172, 2008.
doi:10.2528/PIERL08101201
http://www.jpier.org/PIERL/pier.php?paper=08101201

References


    1. Pues, H. F. and A. R. Van De Capelle, "An impedancematching technique for increasing the bandwidth of the microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 11, 1345-1354, November 1989.
    doi:10.1109/8.43553

    2. Aanaandan, C. K., P. Mohanan, and K. G. Nair, "Broad-band gap coupling microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1581-1585, October 1990.
    doi:10.1109/8.59771

    3. Fang, S.-T., K.-L. Wong, and T.-W. Chiou, "Bandwidth enhancement of inset-microstrip-line-fed equilateral-triangular microstrip antenna," Electronics Letters, Vol. 34, No. 23, 2184-2185, November 12, 1998.
    doi:10.1049/el:19981578

    4. Bernhard, J. T., R. Wang, R. Clark, and P. Mayes, "Stacked reconfigurable antenna elements for space based radar applications," Proc. IEEE/URSI Antennas Propagat. Soc. Int. Symp., Vol. 1, 158-161, 2001.

    5. Maloney, J. C., M. P. Kesler, L. M. Lust, L. N. Pringle, T. L. Fountain, and P. H. Harms, "Switched fragmented aperture antennas," PROC. IEEE Antennas Propagat. Soc. Int. Symp., Vol. 1, 310-313, 2000.

    6. Vinoy, K. J., K. A. Jose, V. K. Varadan, and V. V. Varadan, "Hilbert curve fractal antennas with reconfigurable characteristics," Proc. EEE MTT-S Int. Microw. Symp. Digest, Vol. 1, 381-384, 2001.

    7. Huff, G. H., J. Feng, S. Zhang, and J. T. Bernhard, "A novel radiation pattern and frequency reconfigurable single turn square spiral microstrip antenna," IEEE Microwave Wireless Components Letter, Vol. 13, 57-59, February 2003.
    doi:10.1109/LMWC.2003.808714

    8. Ansari, J. A. and R. B. Ram, "E-shaped patch symmetrically loaded with tunnel diodes for frequency Agile/broadband operation," Progress In Electromagnetics Research B, Vol. 1, 29-42, 2008.
    doi:10.2528/PIERB07101202

    9. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3g Imt-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
    doi:10.2528/PIER03100901

    10. Fayad, H. and P. Record, "Multi-feed dielectric resonator antenna with reconfigurable radiation pattern," Progress In Electromagnetics Research, Vol. 76, 341-356, 2007.
    doi:10.2528/PIER07071204