Vol. 8
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-04-17
Frequency Selective Surfaces with Fractal Four Legged Elements
By
Progress In Electromagnetics Research Letters, Vol. 8, 1-8, 2009
Abstract
Frequency selective surfaces (FSSs) with fractal four legged aperture elements are studied. Three different order fractal elements are discussed for comparison. The results show that by using this novel kind of elements, multiband FSSs with miniaturized elements can be achieved. The ratio of the first resonant wavelength to the periodicity can be up to 10.36. Four passbands for normal incidence or two stable passbands for different incident angle and polarizations can be obtained. The FSS is analyzed by the spectral domain approach.
Citation
Jian-Cheng Zhang, Ying-Zeng Yin, and Jin-Ping Ma, "Frequency Selective Surfaces with Fractal Four Legged Elements," Progress In Electromagnetics Research Letters, Vol. 8, 1-8, 2009.
doi:10.2528/PIERL08112301
References

1. Chakravarty, S., R. Mittra, and N. R. Williams, "Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 3, 284-296, 2002.
doi:10.1109/8.999618

2. Wu, T. K. (ed.), Frequency Selective Surface and Grid Array, Wiley-Interscience, New York, 1995.

3. Wu, T. K., "Four-band frequency selective surface with double-square-loop patch elements," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 12, 1659-1663, 1994.
doi:10.1109/8.362804

4. Guo, C., H. Sun, and X. Lu, "A novel dualband frequency selective surface with periodic cell perturbation," Progress In Electromagnetics Research B, Vol. 9, 137-149, 2008.
doi:10.2528/PIERB08071302

5. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

6. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multilayered frequency selective surface with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803

7. Barlevy, A. S. and Y. Rahmat-Samii, "On the electrical and numerical properties of high Q resonances in frequency selective surfaces," Progress In Electromagnetics Research, Vol. 22, 1-27, 1999.
doi:10.2528/PIER98101301

8. Li, L., D. H.Werner, J. A. Bossard, and T. S. Mayer, "A modelbased parameter estimation technique for wide-band interpolation of periodic moment method impedance matrices with application to genetic algorithm optimization of frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 3, 908-924, 2006.
doi:10.1109/TAP.2006.869915

9. Parker, E. A. and A. N. A. El Sheikh, "Convoluted array elements and reduced size unit cells for frequency-selective surfaces," IEE Proceedings---H, Vol. 138, No. 1, 19-22, 1991.

10. Barbagallo, S., A. Monorchio, and G. Manara, "Small periodicity FSS screens with enhanced bandwidth performance," Electronics Letters, Vol. 42, No. 7, 382-384, 2006.
doi:10.1049/el:20060329

11. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4--3.6GHz Wi-Max band portable devices," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 116-119, 2006.
doi:10.1109/LAWP.2006.872427

12. Azari, A., "Ultra wideband fractal microstrip antenna design," Progress In Electromagnetics Research C, Vol. 2, 7-12, 2008.
doi:10.2528/PIERC08031005

13. Salmasi, M. P., "A novel broadband fractal Sierpinski shaped, microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008.

14. Werner, D. H. and D. Lee, "A design approach for dual-polarized multiband frequency selective surfaces using fractal elements," IEEE Antennas and Propagation Symposium, Vol. 3, 1692-1695, 2000.