Vol. 6
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-02-05
An Experiment Research on Extend Range of Based on Fiber Bragg Grating Demodulation Based on Cwdm
By
Progress In Electromagnetics Research Letters, Vol. 6, 115-121, 2009
Abstract
According to the Coarse Wavelength Division Multiplexing (CWDM) wavelength dependent transmission characteristics, a wide range fiber Bragg grating (FBG) demodulation method is proposed and experimentally demonstrated in this paper. The relationship between system input and output is obtained through analysis, and verified experimentally. Particularly the influence of light source power on demodulation precision and calibration value is analyzed. The wavelength demodulation range of the system is about 10 nm, which can realize the measurement of 8000με; The precision can be 3~5 pm. Since the system is compact, low cost and passive, it is able to be integrated as a portable demodulation module.
Citation
Meng He, Junfeng Jiang, Jing Han, and Tiegen Liu, "An Experiment Research on Extend Range of Based on Fiber Bragg Grating Demodulation Based on Cwdm," Progress In Electromagnetics Research Letters, Vol. 6, 115-121, 2009.
doi:10.2528/PIERL08123105
References

1. Kersey, A. D., M. D. Davis, H. J. Patrick, et al. "Fiber grating sensor," IEEE Journal of Lightwave Technology, Vol. 15, 44221463, 1997.
doi:10.1109/50.618377

2. Rao, Y. J., "In-fibre Bragg grating sensor," Measurement Science Technology, Vol. 8, 3552375, 1997.

3. Rizkalla, S. H., A. A. Mufti, and G. Tadros, "Recent innovation for concrete highway bridges in Canada," International SAMPE Symposium and Exhibition, Vol. 42, No. 1, 281-287, Anaheim, CA, USA, 1997..

4. Kersey, A. D., T. A. Berkoff, and W. W. Morey, "High resolution fibre grating based strain sensor with interferometric wavelength shift detection," Electron. Lett., Vol. 23, 236-238, 1992.
doi:10.1049/el:19920146

5. Flavin, D. A., R. McBride, and J. D. C. Jones, "Short optical path scan interferometric interrogation of a fibre Bragg grating embedded in a composite," Electron. Lett., Vol. 33, No. 4, 319-321, 1997.
doi:10.1049/el:19970208

6. Melle, S. M., A. T. Alavie, S. Karr, et al. "A Bragg grating-tuned fiber laser strain sensor system," IEEE Photonics Technology Letters, Vol. 5, No. 2, 263-266, 1993.
doi:10.1109/68.196025

7. Geiger, H., M. G. Xu, and J. P. Dakin, "Multiplexed measurements of strain using short and long gauge length sensors," SPIE 1995, Vol. 2507, 25-34, 1995.
doi:10.1117/12.219628

8. Davis, M. A. and A. D. Kersey, "All fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler," Electron. Lett., Vol. 30, No. 1, 75-77, 1994.
doi:10.1049/el:19940059

9. Chung, S., J. Kim, B.-A. Yu, et al. "Afiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror [J]," IEEE Photonics Technology Letters, Vol. 13, No. 12, 1343-1345, 2001.
doi:10.1109/68.969902

10. Zhang, J., H. Zhao, and Y. Xiong, "A FBG sensor demodulation method based on an amplified spontaneous emission light source," Chinese Journal of Scientific Instrument, Vol. 27, No. 1, 118-121, 2006.

11. Wu, J.-W. and H.-B. Bao, "Amplification, compression and shaping of picosecond super-Gaussian optical pulse using MZISOAs configuration," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2215-2228, 2007.
doi:10.1163/156939307783134308

12. Biswas, A., "Stochastic perturbation of parabolic law optical solutions," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1479-1488, 2007.
doi:10.1163/156939307782000262

13. Rostami, A. and A. Yazdanpanah-Goharrizi, "A new method for classification and identification of complex fiber Bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

14. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806