Vol. 7
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-03-20
Microstrip-Fed Monopole Antenna with a Shorted Parasitic Element for Wideband Application
By
Progress In Electromagnetics Research Letters, Vol. 7, 115-125, 2009
Abstract
A microstrip-fed planar monopole antenna consisting of an inverted-L monopole and a square parasitic element extending from ground plane directly to obtain wideband operation covering Bluetooth/ISM, 2.5 GHz WiMAX, 3.5 GHz WiMAX and 5.2/5.8 GHz WLAN bands is presented. The proposed antenna employs a shorted parasitic element to improve the bandwidth. The return loss of the suggested antenna geometry was calculated by a commercial HFSS 9 simulator and the results are compared with measured return loss, which shows a good agreement between them. Details of the proposed antenna designs and experimental results of the constructed prototypes are presented.
Citation
Ching-Fang Tseng Cheng-Liang Huang Cheng-Hsing Hsu , "Microstrip-Fed Monopole Antenna with a Shorted Parasitic Element for Wideband Application," Progress In Electromagnetics Research Letters, Vol. 7, 115-125, 2009.
doi:10.2528/PIERL09021206
http://www.jpier.org/PIERL/pier.php?paper=09021206
References

1. Allen, B., M. Dohler, E. E. Okon, W. Q. Malik, A. K. Brown, and D. J. Edwards, Ultra-wideband Antennas and Propagation, John Wiely & Sons Inc., New York, 2007.

2. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, John Wiely & Sons Inc., New York, 2002.

3. Balanis, C. A., "Antenna Theory: Analysis and Design," John Wiely & Sons Inc., 2005.

4. Lau, K.-L., P. Li, and K.-M. Luk, "A monopolar patch antenna with very wide impedance bandwidth," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 655-661, 2005.

5. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics ," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1453-1460, 2006.
doi:10.1109/TAP.2006.874354

6. Qu, S.-W., C.-L. Ruan, and Q. Xue, "A planar folded ultrawideband antenna with gap-loading," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 216-220, 2007.
doi:10.1109/TAP.2006.888465

7. Lin, Y.-C. and K.-J. Hung, "Compact ultrawideband rectangular aperture antenna and band-notched designs," IEEE Trans. Antennas Propag., Vol. 54, No. 11, 3075-3081, 2006.
doi:10.1109/TAP.2006.883982

8. Qu, S.-W., J.-L. Li, J.-X. Chen, and Q. Xue, "Ultrawideband striploaded circular slot antenna with improved radiation patterns," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3348-3353, 2007.
doi:10.1109/TAP.2007.908847

9. Johnston, R. H., T. C. Choi, and E. Tung, "A compact ultra wide impedance bandwidth antenna," IEEE AP-S Int. Symp., Vol. 2, 1863-1866, 2004.

10. Jan, J. Y. and L. C. Tseng, "Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4-, 5.2-, and 5.8-GHz bands," IEEE Trans. Antennas Propag., Vol. 52, 1903-1905, 2004.
doi:10.1109/TAP.2004.831370

11. Huang, C. Y. and P. Y. Chiu, "Dual-band monopole antenna with shorted parasitic element," Electron. Lett., Vol. 41, 1154-1155, 2005.
doi:10.1049/el:20052793

12. Lin, Y. D. and P. L. Chi, "Tapered bent folded monopole for dual-band wireless local area network (WLAN) systems," IEEE Antenna Wireless Propag. Lett., Vol. 4, 355-357, 2005.
doi:10.1109/LAWP.2005.857035

13. Kuo, Y. L. and K.-L.Wong, "Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2187-2192, 2003.
doi:10.1109/TAP.2003.816391

14. Choi, S. H., J. K. Park, S. K. Kim, and H. Y. S. Kim, "Design of dualband antenna for the ISM band using a backed microstrip line," Microw. Opt. Technol. Lett., Vol. 41, No. 6, 457-460, 2004.
doi:10.1002/mop.20170

15., , Deploying License-Exempt WiMAX Solutions Intel Corp. Santa Clara, CA, 2005 [Online]. Available: http://www.intel.com/netcomms/technologies/wimax.
doi:10.1002/mop.20170

16. Krishna, D. D., M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, "CPW-fed koch fractal slot antenna for WLAN/WiMAX applications," IEEE Antenna Wireless Propag. Lett., Vol. 7, 389-392, 2008.
doi:10.1109/LAWP.2008.2000814

17. Li, R., B. Pan, J. Laskar, and M. M. Tentzeris, "Analysis of a broadband low-profile two-strip monopole antenna," Proc. Int. Symp., Antenna Propagation & EM Theory (ISAPE), 1-4, 2006.

18. Anguera, J., C. Puente, C. Borja, and , "A procedure to design stacked microstrip patch antennas based on a simple network model," Microwave Opt. Technol. Lett., Vol. 30, 149-151, 2001.
doi:10.1002/mop.1248