Vol. 9
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-06-11
Controllable Wavelength Channels for Multiwavelength Brillouin Bismuth/Erbium Based Fiber Laser
By
Progress In Electromagnetics Research Letters, Vol. 9, 9-18, 2009
Abstract
We propose and demonstrate a Multiwavelength Brillouin Bismuth/Erbium Fibre Laser (MBBEFL) with the ability to control the number of wavelength channels generated. A multi-wavelength comb output is obtained using a 7.7 km DCF as a non linear gain medium to generate Stokes wavelengths through the process of Stimulated Brillouin Scattering (SBS). The DCF is pumped by a Raman pump source at 400 mW to lower the dispersion loss and promote the generation of the Stokes wavelengths. A 49 cm long Bismuth based Erbium Doped Fibre (Bi-EDF) is used as an optical amplifier to provide the necessary gain for the Brillouin Pump and also act as the gain medium for the generated Stokes signal.
Citation
Harith Ahmad, Mohd Zamani Zulkifli, Siti Fatimah Norizan, Amirah Abdul Latif, and Sulaiman Wadi Harun, "Controllable Wavelength Channels for Multiwavelength Brillouin Bismuth/Erbium Based Fiber Laser," Progress In Electromagnetics Research Letters, Vol. 9, 9-18, 2009.
doi:10.2528/PIERL09031905
References

1. Mears, R. J., L. Reekie, I. M. Jauncey, and D. N. Payne, "Low-noise erbium-doped fibre amplifier at 1.54 pm," Electron. Lett., Vol. 23, 1026-1028, 1987.
doi:10.1049/el:19870719

2. Chow, J., G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, "Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters," IEEE Photon. Technol. Lett., Vol. 8, 60-62, 1996.
doi:10.1109/68.475778

3. Dong, X. P., S. P. Li, K. S. Chiang, M. N. Ng, and B. C. B. Chu, "Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror," Electron. Lett., Vol. 36, 1609-1610, 2000.
doi:10.1049/el:20001158

4. Liu, X., X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, "Stable and uniform dual wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express, Vol. 13, 142-147, 2005.
doi:10.1364/OPEX.13.000142

5. Yang, X., X. Dong, S. Zhang, F. Lu, X. Zhou, and C. Lu, "Multiwavelength erbium-doped fiber laser with 0.8-nm spacing using sampled Bragg grating and photonic crystal fiber," IEEE Photon. Technol. Lett., Vol. 17, 2538-2540, 2005.
doi:10.1109/LPT.2005.858076

6. Fok, M. P. and C. Shu, "Tunable dual-wavelength erbium-doped fiber laser stabilized by four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber," Opt. Express, Vol. 15, No. 10, 5925-5930, 2007.
doi:10.1364/OE.15.005925

7. Liu, Y., X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings," Opt. Express, Vol. 12, 2056-2061, 2004.
doi:10.1364/OPEX.12.002056

8. Harun, S. W., M. Z. Zulkifli, and H. Ahmad, "A linear cavity S-band Brillouin/erbium fiber laser," Laser Phys. Lett., Vol. 3, No. 7, 369-371, 2006.
doi:10.1002/lapl.200610017

9. Han, Y. G., G. Kim, J. H. Lee, S. H. Kim, and S. B. Lee, "Lasing wavelength and spacing switchable multiwavelength fiber laser from 1510 to 1620 nm," IEEE Photon. Technol. Lett., Vol. 17, 989-991, 2005.

10. Harun, S. W., S. Shahi, and H. Ahmad, "Compact Brillouin-erbium fiber laser," Opt. Express, Vol. 34, 46-48, 2009.

11. Shahi, S., S. W. Harun, A. H. Sulaiman, K. Thambiratnam, and H. Ahmad, "Multiwavelength source based on SOA and EDFA in a ring-cavity resonator," Microwave and Optical Tech. Lett., Vol. 51, No. 1, 110-113, 2008.
doi:10.1002/mop.23970

12. Fok, M. P. and C. Shu, "Tunable dual-wavelength erbium-doped fiber laser stabilized by four-wave mixing in a 35-cm highly nonlinear bismuth-oxide fiber," Opt. Express, Vol. 15, No. 10, 5925-5930, 2006.
doi:10.1364/OE.15.005925