Vol. 10
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-07-15
Complementary Split Ring Resonators with Dual Mesh-Shaped Couplings and Defected Ground Structures for Wide Pass-Band and Stop-Band BPF Design
By
Progress In Electromagnetics Research Letters, Vol. 10, 19-28, 2009
Abstract
Novel configurations of complementary split ring resonator (CSRR) with dual mesh-shaped couplings and defected ground structures (DGS) are introduced to design the high performance of wide pass-band and stop-band band pass filters (BPF). This paper presents a low insertion loss (-0.82 dB), symmetry and sharper transmission zero level (-51.88 dB), using effective DGS and alternative coupling for CSRR. The filter with center frequency at 1.92 GHz, pass-band from 1.21 GHz to 3.05 GHz (BW = 95.8%) and wider stop-band (extended to 4.2f0 below -20 dB rejection level) is designed and fabricated. Simulation and measured results including surface current distributions and frequency responses are presented and discussed.
Citation
Ji-Chyun Liu, Hsieh-Chih Lin, and Bing-Hao Zeng, "Complementary Split Ring Resonators with Dual Mesh-Shaped Couplings and Defected Ground Structures for Wide Pass-Band and Stop-Band BPF Design," Progress In Electromagnetics Research Letters, Vol. 10, 19-28, 2009.
doi:10.2528/PIERL09060402
References

1. Chang, K., Microwave Ring Circuits and Antennas, John Wiley, New York, 1996.

2. "Ultra wide band pass filters (UWBPF) based on complementary split rings resonators," Microwave Opt. Tech. Lett., Vol. 46, No. 3, 283-286, Aug. 2005.
doi:10.1002/mop.20966

3. Bonache, J., F. Martin, F. Falcone, J. D. Baena, T. Lopetegi, J. Garcia, M. A. G. Laso, I. Gil, A. Marcotegui, R. Marques, and M. Sorolla, "Application of complementary split-ring resonators to the design of compact narrow band-pass structures in microstrip technology," Microwave Opt. Tech. Lett., Vol. 46, No. 5, 508-512, Sep. 2005.
doi:10.1002/mop.21031

4. Baena, J. D., J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia, I. Gil, M. F. Portillo, and M. Sorolla, "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 53, No. 4, 1451-1461, Apr. 2005.
doi:10.1109/TMTT.2005.845211

5. Bonache, J., I. Gil, J. Garcia, and F. Martin, "Novel microstrip bandpass ¯lters based on complementary split-ring resonators," IEEE Trans. Microwave Theory and Tech., Vol. 54, No. 11, 265-271, Jan. 2006.
doi:10.1109/TMTT.2005.861664

6. Mondal, P., M. K. Mandal, A. Chaktabarty, and v, "Compact bandpass fiwith wide controllable fractional ," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 10, 540-542, Oct. 2006.
doi:10.1109/LMWC.2006.882401

7. Wu, H. W., Y. K. Su, M. H. Weng, and C. Y. Hung, "A compact narrow-band microstrip bandpass filter with a complementary split-ring resonator," Microwave Opt. Tech. Lett., Vol. 48, No. 10, 2103-2106, Oct. 2006.
doi:10.1002/mop.21865

8. Wu, H. W., M. H. Wang, Y. K. Su, R. Y. Yang, and C. Y. Hung, "Accurate equivalent circuit for etched resonator with effective negative permittivity," Microwave Opt. Tech. Lett., Vol. 49, No. 1, 231-234, Jan. 2007.
doi:10.1002/mop.22090

9. Wu, H. W., M. H. Wang, Y. K. Su, R. Y. Yang, and C. Y. Hung, "Propagation characteristics of complementary split-ring resonator for wide bandgap enhancement in microstrip bandpass filter," Microwave Opt. Tech. Lett., Vol. 49, No. 2, 292-295, Feb. 2007.
doi:10.1002/mop.22121

10. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

11. Wu, G. L., W. Mu, X. W. Dai, and Y. C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and CSRR DGS," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

12. Garcia, J., F. Martin, F. Falcone, J. Bonache, J. D. Baena, I. Gil, E. Amat, T. Lopetegi, M. A. G. Laso, J. A. M. Iturmendi, M. Sorolla, and R., "Microwave filters with improved stopband based on sub-wavelength resonators," IEEE Trans. Microwave Theory and Tech., Vol. 53, No. 6, 1997-2006, Jun. 2005.
doi:10.1109/TMTT.2005.848828

13. Zhang, J., B. Cui, S. Lin, and X.-W. Sun, "Sharp-rejection low-pass filter with controllable transmission zero using complemen-tary split ring resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 69, 219-226, 2007.
doi:10.2528/PIER06122103

14. Niu, J. X. and X. L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.
doi:10.2528/PIER07051802

15. Shi, J., J. X. Chen, and Q. Xue, "A quasi-elliptic function dual-band bandpass filter stacking spiral-shaped cpw defected ground structure and back-side coupled strip lines," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 430-432, Jun. 2007.
doi:10.1109/LMWC.2007.897791

16. Maddah-Ali, M., H. D. Oskouei, and K. Forooraghi, "A compact branch-line coupler using defected ground structures," Microwave Opt. Tech. Lett., Vol. 50, No. 6, 386-389, Feb. 2008.
doi:10.1002/mop.23118

17. Kuan, H. and H. Y. Pan, "Design of a dual-mode bandpass filter with wide stopband performance for GPS application," Microwave Opt. Tech. Lett., Vol. 50, No. 6, 445-447, Feb. 2008.
doi:10.1002/mop.23123

18. Zeland Software Inc., IE3D version 10.0, , Jan. 2005.