Vol. 12
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2009-09-23
Analysis of the Performance of Injection Locked Oscillators in a Data Transmitting Polarisation Agile Antenna Application
By
Progress In Electromagnetics Research Letters, Vol. 12, 1-10, 2009
Abstract
In this work, a polarisation agile antenna based on an array of two injection locked oscillators is presented. The proposed topology provides a theoretical relative phase shift range of 360 degrees between the output signals, which can be easily controlled through two DC voltages. The behaviour of the system is studied, both through simulations and measurements of the manufactured prototype, focusing on the joint performance of the oscillators. The data transmission capabilities of the system are analysed, proposing a solution for phase modulated signals.
Citation
Carlos Vazquez-Antuna, Samuel Ver-Hoeye, Miguel Fernandez-Garcia, Luis Herran Ontanon, and Fernando Las Heras Andres, "Analysis of the Performance of Injection Locked Oscillators in a Data Transmitting Polarisation Agile Antenna Application," Progress In Electromagnetics Research Letters, Vol. 12, 1-10, 2009.
doi:10.2528/PIERL09062504
References

1. Saed, M. A., "Reconfigurable broadband microstrip antenna FED by a coplanar waveguide," Progress In Electromagnetics Research, Vol. 55, 227-239, 2005.
doi:10.2528/PIER05031601

2. Wu, W., B. Z. Wang, and S. Sun, "Pattern reconfigurable microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 107-113, Jan. 2005.
doi:10.1163/1569393052955125

3. Wu, W. and Y. H. Bi, "Switched-beam planar fractal antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 409-415, 2006.
doi:10.1163/156939306775701786

4. Chen, Y. B., T. B. Chen, Y. C. Jiao, and F. S. Zhang, "A reconfigurable microstrip antenna with switchable polarization," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1391-1398, 2006.
doi:10.1163/156939306779276820

5. Vazquez, C., S. Ver Hoeye, G. Leon, M. Fernandez, L. F. Herran, and F. Las Heras, "Transmitting polarisation agile microstrip antenna based on injection locked oscillators," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17/18, 2427-2437, Dec. 2008.
doi:10.1163/156939308787543831

6. Yen, S.-C. and T.-H. Chu, "A beam-scanning and polarizationagile antenna array using mutually coupled oscillating doublers," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 4051-4057, Dec. 2005.
doi:10.1109/TAP.2005.859751

7. Kykkotis, C., P. Hall, and H. Ghafouri-Shiraz, "Active antenna oscillator arrays in communication systems," Microw. Symp. Dig., 1997 IEEE MTT-S Int., Vol. 2, 591-594, Jun. 1997.
doi:10.1109/MWSYM.1997.602862

8. Ver Hoeye, S., A. Suarez, and J. Portilla, "Techniques for oscillator nonlinear optimization and phase-noise analysis using commercial harmonic balance software," Microw. Symp. Dig., 2000 IEEE MTT-S Int., Vol. 1, 95-98, Jun. 2000.

9. Ver Hoeye, S., L. F. Herran, M. Fernandez, and F. Las Heras, "Design and analysis of a microwave large-range variable phaseshifter based on an injection-locked harmonic self-oscillating mixer," IEEE Microwave Wireless Compon. Lett., Vol. 16, No. 6, 342-344, Jun. 2006.
doi:10.1109/LMWC.2006.875623

10. Ver Hoeye, S., A. Suarez, and S. Sancho, "Analysis of noise effects on the nonlinear dynamics of synchronized oscillators," Microwave and Wireless Components Letters, IEEE,, Vol. 11, No. 9, 376-378, Sep. 2001.
doi:10.1109/7260.950766