Vol. 14
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-05-19
Novel Impedance Matching Scheme for Patch Antennas
By
Progress In Electromagnetics Research Letters, Vol. 14, 155-163, 2010
Abstract
Aiming at the bandwidth enhancement for patch antennas, a new impedance matching scheme is presented. In this design, open-ended microstrip-lines are used as the matching resonators; the gaps between the lines are used as the J inverters. Numerical and experimental studies are executed to demonstrate this new structure. The measured and predicted results are in good agreement. The measured data show that the bandwidth of a sample antenna is increased by a factor of 3.3 after adding two matching resonators. The proposed matching structure is good in performance, and smaller in size than traditional matching structures.
Citation
Xiao-Dong Huang, Xiu-Hua Jin, and Chong-Hu Cheng, "Novel Impedance Matching Scheme for Patch Antennas," Progress In Electromagnetics Research Letters, Vol. 14, 155-163, 2010.
doi:10.2528/PIERL10040801
References

1. Pozar, D. M., "A review of bandwidth enhancement techniques for microstrip antennas ," Microstrip Antennas: Analysis and Design of Microstrip Antennas and Arrays, 157-166, IEEE Press, 1995.

2. Kumar, G. and K. Ray, Broadband Microstrip Antennas Norwood, Artech House, MA, 2003.

3. Sabban, A., "A new broadband stacked two-layer microstrip antenna," IEEE AP-S Int. Symp. Digest, 63-66, 1983.

4. Wood, C., "Improved bandwidth of microstrip antennas using parasitic elements," Proc. IEE, Microwaves, Optics and Antennas, Vol. 127, 231-234, 1980.

5. Guo, Y. X., K. M. Luk, K. F. Lee, and Y. L. Chow, "Double U-slot rectangular microstrip antenna," Electronics Letters, Vol. 34, 1805-1806, 1998.
doi:10.1049/el:19981283

6. Luk, K. M., X. Guo, K. F. Lee, and Y. L. Chow, "L-probe proximity fed U-slot patch antenna," Electronics Letters, Vol. 34, 1806-1807, 1998.
doi:10.1049/el:19981276

7. Huang, K. C. and H. F. Li, "A novel single-layer single-patch wide-band probe-feed crescentlike-shaped microstrip antenna," Journal of Electromagnetics Waves and Applications, Vol. 23, 279-287, 2009.
doi:10.1163/156939309787604562

8. Shi, S. J., L. H. Weng, Y. Y. Yang, X. Q. Chen, and X. W. Shi, "Design of wideband dissymmetric E-shaped microstrip patch antenna," Journal of Electromagnetics Waves and Applications, Vol. 23, 645-654, 2009.
doi:10.1163/156939309788019769

9. Pues, H. G. and A. R. Van de Capelle, "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas Propagation, Vol. 37, 1345-1354, 1989.
doi:10.1109/8.43553

10. An, H. M., B. K. J. C. Nauwelaers, and A. R. Van de Capelle, "Broadband microstrip antenna design with the simplified real frequency technique," IEEE Trans. Antennas Propagation.
doi:10.1109/8.43553

11. Kim, J. I. and Y. J. Yoon, "Design of wideband microstrip array antennas using the coupled lines ," IEEE AP-S Int. Symp. Digest, 1410-1413, 2000.

12. Kim, I. K., J. I. Kim, S. Pinel, J. Laskar, M. M. Tentzeris, and J. G. Yook, "Novel feeding topologies for 2nd harmonic suppression in broadband microstrip patch antennas," IEEE AP-S Int. Symp., 1483-1486, 2006.

13. Abunjaileh, A. I., I. C. Hunter, and A. H. Kemp, "A circuit theoretic approach to the design of quadruple-mode broadband microstrip patch antennas," IEEE Trans. Microwave Theory and Techniques, Vol. 56, 896-900, 2008.
doi:10.1109/TMTT.2008.918137

14. Abdelaziz, A. A., "Bandwidth enhancement of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.
doi:10.2528/PIER06053001

15. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Sec. 4.09-4.10, McGraw-Hill, New York, 1980.

16. Hong, J. S. and M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications," Wiley, New York, 2001, 150-153.