Vol. 17
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-08-25
Propagation Along Single-Crystalline Silver Filaments with Pearl-Chain-Like Structures
By
Progress In Electromagnetics Research Letters, Vol. 17, 75-83, 2010
Abstract
In this paper, single-crystalline silver filaments with periodic, pearl-chain-like structures are fabricated by electrodeposition without using any templates, surfactants, and additives. Simulations demonstrate that excited surface waves may sustain on silver pearl chains in middle infrared (Mid-IR) range. Based on the propagation features of surface waves on the silver filaments, this structure can be applied for electromagnetic wave transmittance in Mid-IR range. The propagation features of surface waves on the silver filaments indicate the structure application for Mid-IR wave transmittance.
Citation
Zhe Wu, Bao-Qing Zeng, and Jinfeng Zhu, "Propagation Along Single-Crystalline Silver Filaments with Pearl-Chain-Like Structures," Progress In Electromagnetics Research Letters, Vol. 17, 75-83, 2010.
doi:10.2528/PIERL10061207
References

1. Howes, M. J. and D. V. Morgan, Microwave Devices: Device Circuit Interactions, Wiley, New York, 1976.

2. Cook, N. P., Microwave Principles and Systems, Prentice-Hall, Englewood Cliffs, NJ, 1986.

3. Chedid, M., I. Belov, and P. Leisner, "Electromagnetic coupling to a wearable application based on coaxial cable architecture," Progress In Electromagnetics Research, Vol. 56, 109-128, 2006.
doi:10.2528/PIER05070101

4. Crozier, K. B., E. Togan, E. Simsek, et al. "Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains," Optics Express, Vol. 15, 17482-17493, 2007.
doi:10.1364/OE.15.017482

5. Wei, Q.-H., K.-H. Su, S. Durant, et al. "Plasmon resonance of finite one-dimensional Au nanoparticle chains," Nano Lett., Vol. 4, 1067-1071, 2004.
doi:10.1021/nl049604h

6. Maier, S. A., M. L. Brongersma, P. G. Kik, et al. "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B, Vol. 65, 193408, 2002.
doi:10.1103/PhysRevB.65.193408

7. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.
doi:10.1126/science.1098999

8. Maier, S. A., S. R. Andrews, L. Martín-Moreno, et al. "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett., Vol. 97, 176805, 2006.
doi:10.1103/PhysRevLett.97.176805

9. Ji, Y. B., E. S. Lee, J. S. Jang, et al. "Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide," Optics Express, Vol. 16, 271-278, 2008.
doi:10.1364/OE.16.000271

10. Kong, F. M., K. Li, B. I. Wu, et al. "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

11. Menachem, Z. and M. Mond, "Infrared wave propagation in a helical waveguide with inhomogeneous cross section and application," Progress In Electromagnetics Research, Vol. 61, 159-192, 2006.
doi:10.2528/PIER06020205

12. Kumar, N. and S. P. Ojha, "Photonic crystals as infrared broadband reflectors with different angles of incidence: A comparative study," Progress In Electromagnetics Research, Vol. 80, 431-445, 2008.
doi:10.2528/PIER07120502

13. Wang, M., S. Zhong, X.-B. Yin, et al. "Nanostructured copper filaments in electrochemical deposition," Phys. Rev. Lett., Vol. 86, 3827-3830, 2001.
doi:10.1103/PhysRevLett.86.3827

14. Zhong, S., Y. Wang, M. Wang, et al. "Formation of nanostructured copper filaments in electrochemical deposition," Phys. Rev. E, Vol. 67, 061601, 2003.
doi:10.1103/PhysRevE.67.061601

15. Wang, Y., Y. Cao, M. Wang, et al. "Spontaneous formation of periodic nanostructured film by electrodeposition: Experimental observations and modeling," Phys. Rev. E, Vol. 69, 021607, 2004.
doi:10.1103/PhysRevE.69.021607

16. Wu, Z., Y.-J. Bao, G.-W. Yu, et al. "Characterization of periodically nanostructured copper filaments self-organized by electrodeposition," J. Phys.: Condens. Matter, Vol. 18, 5425-5434, 2006.
doi:10.1088/0953-8984/18/23/014

17. Wu, Z., H.-M. Li, X. Xiong, et al. "Electrodeposition of single-crystalline silver pearl chains," Appl. Phys. Lett., Vol. 94, 041120, 2009.
doi:10.1063/1.3072607

18. Doremus, R. H., B. W. Roberts, and D. Turnbull, Growth and Perfection of Crystals, Wiley-VCH, Weinheim, Germany, 1958.

19. Ming, N. B., The Physical Base of Crystal Growth, Shanghai Science Technology Press, Shanghai, 1982.

20. He, R., X. Qian, J. Yin, et al. "Formation of silver dendrites under microwave irradiation," Chem. Phys. Lett., Vol. 369, 454-458, 2003.
doi:10.1016/S0009-2614(02)02036-5

21. Geddes, C. D., "Fractal silver structures for metal-enhanced fluorescence: Applications for ultra-bright surface assays and lab-on-a-chip-based nanotechnologies," Journal of Fluorescence, Vol. 13, 119-122, 2003.
doi:10.1023/A:1022916524083

22. Huang, H., Y. Fan, B.-I. Wu, et al. "Tunable TE/TM wave splitter using a gyrotropic slab," Progress In Electromagnetics Research, Vol. 85, 367-380, 2008.
doi:10.2528/PIER08080303

23. Aliakbarian, H., Enayati, G. A. E. Vandenbosch, et al. "Novel low-cost end-wall microstrip-to-waveguide splitter transition," Progress In Electromagnetics Research, Vol. 101, 75-96, 2010.
doi:10.2528/PIER09081805

24. Shi, Y. C., "A compact polarization beam splitter based on a multimode photonic crystal waveguide with an internal photonic crystal section," Progress In Electromagnetics Research, Vol. 103, 393-401, 2010.
doi:10.2528/PIER10040402

25. Zhang, M., S. Lenhert, M. Wang, et al. "Regular arrays of copper wires formed by template-assisted electrodeposition," Adv. Mater., Vol. 16, 409-413, 2004.
doi:10.1002/adma.200305577

26. Zhang, B., Y.-Y. Weng, X.-P. Huang, et al. "Creating in-plane metallic-nanowire arrays by corner-mediated electrodeposition," Adv. Mater., Vol. 21, 1-5, 2009.

27. Yang, X.-C., X. Zou, Y. Liu, et al. "Preparation and characteristics of large-area and high-filling Ag nanowire arrays in OPAA template," Materials Letters, Vol. 64, 1451-1454, 2010.
doi:10.1016/j.matlet.2010.03.054