Vol. 20
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-19
A Novel Printed Dipole Antenna Using in High Latitudes for Inmarsat
By
Progress In Electromagnetics Research Letters, Vol. 20, 37-44, 2011
Abstract
A novel printed dipole antenna was designed for the L-band satellite communication system INMARSAT (Downlink: 1525--1559 MHz, Uplink: 1626.5--1660.5 MHz). Several structural parameters were experimentally studied with care to establish a design procedure. The measured results show that the impedance bandwidth for return loss below -10 dB is about 170 MHz and that the half-power bandwidth (HPBW) can be up to 110°. The antenna can be used in high latitudes because of wider HPBW.
Citation
Lei Wang Hong-Chun Yang Yang Li , "A Novel Printed Dipole Antenna Using in High Latitudes for Inmarsat," Progress In Electromagnetics Research Letters, Vol. 20, 37-44, 2011.
doi:10.2528/PIERL10101001
http://www.jpier.org/PIERL/pier.php?paper=10101001
References

1. Llcev, S. D., "Inmarsat satellite-based global business solutions for remote and rural communications," AFRICON 2004, 7th AFRICON Conference in Africa, 31-37, Sept. 2004.

2. Vladimir, V. S., "Inmarsat systems and services," ICSC'94, Proceedings of International Conference on Satellite Communications, 45-52, Oct. 1994.

3. Howell, A. and D. Greenwood, "Antennas for INMARSAT 3 and beyond," IEE Colloquium on Satellite Antenna Technology in the 21st Century, 41-46, Jun. 1991.

4. Guy, R. F. E., C. B. Wyllie, and J. R. Brain, "Synthesis of the INMARSAT 4 multibeam mobile antenna," 12th International Conference on Antennas and Propagation, 90-93, Mar. 31--Apr. 3, 2003.

5. Geissler, M., F. Woetzel, M. Bottcher, S. Korthoff, A. Lauer, M. Eube, and R. Gieron, "Innovative phased array antenna for maritime satellite communications," EuCAP2009, 3rd European Conferenc on Antennas and Propagation, 735-739, Mar. 23--27, 2009.

6. Pivit, F., D. Loffler, and W. Wiesbeck, "A broadband, ship based, electronically steered L-band SATCOM antenna," IEEE Antennas and Propagation Society International Symposium, 456-459, Jun. 2003.

7. Noro, T. and Y. Kazama, "A novel wideband circular polarization microstrip antenna combination of different shaped antenna element," IEEE Antennas and Propagation Society International Symposium, 467-470, Jul. 2005.

8. Strickland, P. C., "Planar arrays for MSAT and INMARSAT land mobile satellite communications," Antennas and Propagation Society International Symposium, Vol. 3, 1388-1391, Jun. 18--23, 1995.

9. Sze, J.-Y., C.-L. G. Hsu, M.-H. Ho, Y.-H. Ou, and M.-T. Wu, "Design of circularly polarized annular-ring slot antennas fed by a double-bent microstripline," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 2, 3134-3139, Nov. 2007.

10. Lin, C. L., Circularly Polarized Antenna, Post & Telecom Press, Peking, China, 1986.

11. Bao, X. L. and M. J. Ammann, "A printed dipole antenna for wideband circular polarization operation," EuCAP2009, 3rd European Conference on Antennas and Propagation, 2367-2370, Mar. 2009.

12. Fan, Z., S. Qiao, H.-F. Jiang Tao, and L. X. Ran, "A miniaturized printed dipole antenna with v-shaped ground for 2.45GHZ RFID readers," Progress In Electromagnetics Research, Vol. 71, 149-158, 2007.
doi:10.2528/PIER07022501

13. Lumini, F. and J. C. da S. Lacava, "Near electromagnetic fields in open chirostrip structures excited by printed dipoles," Progress In Electromagnetics Research, Vol. 27, 61-89, 2000.
doi:10.2528/PIER99090204

14. Hu, Y.-S., M. Li, G.-P. Gao, J.-S. Zhang, and M.-K. Yang, "A double-printed trapezoidal patch dipole antenna for UWB applications with band-notched characteristic," Progress In Electromagnetics Research, Vol. 103, 259-269, 2010.
doi:10.2528/PIER10011604