Vol. 19
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-11-18
EBG Frequency Response Tuning Using an Adjustable Air-Gap
By
Progress In Electromagnetics Research Letters, Vol. 19, 31-39, 2010
Abstract
A new adjustable Electromagnetic Band-Gap (EBG) structure whose frequency response is controllable by adjusting spacer height is proposed. The finite difference time domain method is adopted for the simulations. Results show that the desired frequency response can be selected by adjusting the spacer height. The effects of the air-gap on the polarization dependent and conventional EBG structures have been investigated both theoretically and numerically. The agreement between the theoretical calculations and numerical results is reasonably good.
Citation
Mehdi Veysi, and Meisam Shafaee, "EBG Frequency Response Tuning Using an Adjustable Air-Gap," Progress In Electromagnetics Research Letters, Vol. 19, 31-39, 2010.
doi:10.2528/PIERL10101002
References

1. Lin, C.-M., C.-C. Su, S.-H. Hung, and Y.-H. Wang, "A compact balun based on microstrip EBG cell and interdigital capacitor," Progress In Electromagnetics Research Letters, Vol. 12, 111-118, 2009.
doi:10.2528/PIERL09092904

2. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

3. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

4. Shaban, H. F., H. A. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901

5. Scogna, A. C., A. Orlandi, and V. Ricchiuti, "Signal and power integrity analysis of differential lines in multilayer printed circuit boards with embedded electromagnetic bandgap structures," IEEE Trans. Electromagnetic Compatibility, Vol. 52, No. 2, May 2010.
doi:10.1109/TEMC.2009.2027125

6. Rahmat-Samii, Y. and F. Yang, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

7. Sievenpiper, D., "Chapter 11: Review of theory, fabrication, and applications of high impedance ground planes," Metamaterials: Physics and Engineering Explorations, edited by N. Engheta and R. Ziolkowski, John Wiley & Sons Inc., 2006.

8. Liang, J. and H. Y. David Yang, "Microstrip patch antennas on tunable electromagnetic and-gap substrates," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1612-1617, June 2009.
doi:10.1109/TAP.2009.2019928

9. Fernández, J. S., G. Goussetis, and R. Cheung "Tunable 2D Electromagnetic Band-Gap (EBG) structures based on MicroElectro-Mechanical Systems (MEMS) for THz frequencies," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, Toronto, 2010.

10. Zhao, X. and L. Zhou, "Theoretical analysis of a novel performance-adjustable EBG-2-D ferrite EBG," Journal of Electronics (China), Vol. 23, No. 3, May 2006.

11. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329

12. Lee, K. F., K. Y. Ho, and J. S. Dahele, "Circular disc microstrip antenna with an air-gap," IEEE Trans. Antennas Propagat., Vol. 32, 880-884, August 1984.
doi:10.1109/TAP.1984.1143214

13., Dahele, S., S. Mem, and K. F. Lee, "Theory and experiment on microstrip antennas with air gaps," Proc. Inst. Elect. Eng., Part H, Vol. 132, No. 7, 455-460, December 1985.

14. Abboud, F., J. P. Damiano, and A. Papiernik, "A new model for calculating the impedance of coax fed circular microstrip antennas with and without air-gaps," IEEE Trans. Antennas Propagat., Vol. 38, 1882-1885, November 1990.
doi:10.1109/8.102754

15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

16. Rahman, M. and M. A. Stuchly, "Transmission line-periodic circuit representation of planar microwave photonic bandgap structures," Microwave and Optical Tech. Lett., Vol. 30, No. 1, 15-19, 2001.
doi:10.1002/mop.1207