Vol. 20
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-25
Novel Printed Yagi-Uda Antenna with Highgain and Broadband
By
Progress In Electromagnetics Research Letters, Vol. 20, 107-117, 2011
Abstract
A high-gain and broadband printed Yagi-Uda antenna is proposed. The microstripline-to-balance microstripline technique is adopted in the feeding mode of the active dipole, which can help to realize the balanced-unbalanced transformation. The ground of the microstrip feeding line can function as a reflector, and both the longer reflector and the shorter director can also help the antenna achieve wideband. By altering the area of the substrate, the antenna gain can be effectively improved. A printed Yagi-Uda antenna operating at 3.5 GHz has been designed and manufactured. Both the simulated and measured results indicate that there is a high positive correlation between antenna gain and the substrate area extended from the front of the director, and antenna broadband characteristic would not be changed at the same time. Moreover, the impedance bandwidth of the proposed antenna can achieve 27.4%, and the maximum gain in the operating band can reach 10.6 dBi.
Citation
Shu Lin Guan-Long Huang Run-Nan Cai Jin-Xiang Wang , "Novel Printed Yagi-Uda Antenna with Highgain and Broadband," Progress In Electromagnetics Research Letters, Vol. 20, 107-117, 2011.
doi:10.2528/PIERL10102804
http://www.jpier.org/PIERL/pier.php?paper=10102804
References

1. Liang, J. , C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3500-3504, November 2005.
doi:10.1109/TAP.2005.858598

2. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 27-34, January 2010.
doi:10.1109/TAP.2009.2036279

3. Kelly, J. R. , P. S. Hall, P. Gardner, and F. Ghanem, "Integrated narrow/band-notched UWB antenna," Electronics Letters, Vol. 46, No. 12, 814-816, June 10, 2010.
doi:10.1049/el.2010.3368

4. Hu, Y.-S., M. Li, G.-P. Gao, J.-S. Zhang, and M.-K. Yang, "A double-printed trapezoidal patch dipole antenna for uwb applications with band-notched characteristic," Progress In Electromagnetics Research, Vol. 103, 259-269, 2010.
doi:10.2528/PIER10011604

5. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Dual-wideband square slot antenna with a U-shaped printed tuning stub for personal wireless communication systems," Progress In Electromagnetics Research, Vol. 53, 319-333, 2005.
doi:10.2528/PIER04103001

6. Locatelli, A., D. Modotto, F. M. Pigozzo, S. Boscolo, C. De Angelis, A.-D. Capobianco, and M. Midrio, "A planar, differential, and directive ultrawideband antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2439-2442, 2010.
doi:10.1109/TAP.2010.2048870

7. Li, J. Y., "Design of broadband compact size antenna comprised of printed planar dipole pairs," Progress In Electromagnetics Research Letters, Vol. 12, 99-109, 2009.

8. Ranga, Y., A. K. Verma, and K. P. Esselle, "Planar-monopole-fed, surface-mounted quasi-TEMhorn antenna for UWB systems," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2436-2439, July 2010.
doi:10.1109/TAP.2010.2048843

9. Abbosh, A. M., "Miniaturized microstrip-fed tapered-slot antenna with ultrawideband performance," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 690-692, 2009.
doi:10.1109/LAWP.2009.2025613

10. Anagnostou, , D. E., , J. Papapolymerou, M. M. Tentzeris, and C. G. Christodoulou, "A printed log-periodic Koch-dipole array (LPKDA)," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 456-460, 2008.
doi:10.1109/LAWP.2008.2001765

11. Wu, Q., R. Jin, J. Geng, "A single-layer ultrawideband microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 211-214, January 2010.
doi:10.1109/TAP.2009.2027728

12. Avila Navarro, E., J. M. Blanes, J. A. Carrasco, and C. Reig, "Yagi-like printed antennas for wireless sensor networks," 2007 International Conference on Sensor Technologies and Applications,, 254-259, 2007.
doi:10.1109/SENSORCOMM.2007.4394930

13. Zhai, G., W. Hong, K. Wu, and Z. Kuai, "Printed quasi-Yagi antenna fed by half mode substrate integrated waveguide," 2008 Asia-Paci¯c Microwave Conference, 1-4, 2008.