Vol. 22
Latest Volume
All Volumes
PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-23
Effect of the Metal Sheet Thickness on the Frequency Blueshift in Single Layer Composite Materials at Ka Microwave Frequency
By
Progress In Electromagnetics Research Letters, Vol. 22, 47-58, 2011
Abstract
The frequency shift of the transfer function of single layer composite materials has been analyzed and tested. The effects are studied by means of planar pseudo-elliptical filters in Ka waveguide. The filters, consisting of a frequency selective surface placed perpendicularly to the waveguide axis, have been realized by a high resolution photolithographic technique. Deviations of the experimental transfer functions from the simulation are analyzed with particular emphasis to the effect of metal thickness. The finite thickness of the metal constituting the frequency selective surface causes a shift of the transfer function towards high frequencies (blueshift), attributed to dipole-dipole interaction in the metal layer. Such an effect is only partially predicted by full wave analysis based on finite element method. The increase of the thickness determines a reduction of the attenuation for thickness values between 10 and 100 skin depths.
Citation
Claudio Amabile Enrico Prati Filippo Costa Agostino Monorchio , "Effect of the Metal Sheet Thickness on the Frequency Blueshift in Single Layer Composite Materials at Ka Microwave Frequency," Progress In Electromagnetics Research Letters, Vol. 22, 47-58, 2011.
doi:10.2528/PIERL11010405
http://www.jpier.org/PIERL/pier.php?paper=11010405
References

1. Engheta, N. and R. W. Ziolkowski Eds., Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, Hoboken, NJ, 2006.

2. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Novel waveguide filters with multiple attenuation poles dual-behavior resonance of frequency selective surfaces," IEEE Trans. on Microwave Theory and Tech., Vol. 53, No. 11, 3320-3326, 2005.
doi:10.1109/TMTT.2005.857334

3. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

4. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. De Raedt, "Simulation and experimental verification of w-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104

5. Aydin, K., I. M. Pryce, and H. A. Harry Atwater, "Symmetry breaking and strong coupling in planar optical metamaterials," Optics Express, Vol. 18, No. 13, 13407-13417, 2010.
doi:10.1364/OE.18.013407

6. Aydin, K., I. M. Pryce, and H. A. Atwater, "Symmetry breaking and coupling effects in near-infrared metamaterials," Metamaterials --- From Modeling and Fabrication to Application, Materials Research Society, Symposium Proceedings Series, Vol. 1223E, 2009.

7. Padilla, W. J., A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Physical Review Letters, Vol. 96, 107401, 2006.
doi:10.1103/PhysRevLett.96.107401

8. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters, Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

9. Collin, R., Foundations of Microwave Engineering, 2nd Edition, IEEE Press, New York, 2001.
doi:10.1109/9780470544662

10. Goussetis, G. and D. Budimir, "Novel periodically loaded E-plane filters," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 193-195, Jun. 2003.
doi:10.1109/LMWC.2003.811046

11. Seager, R. D., J. C. Vardaxoglou, and D. S. Lockyer, "Close coupled resonant aperture inserts for waveguide filtering applications," IEEE Microwave & Wireless Component Letters, Vol. 11, No. 3, 112-114, 2001.
doi:10.1109/7260.915620

12. Smith, S. L., "Mass-producible E-plane millimeter wave filters," Workshop on the Applications of Radio Science, Leura, NSW Australia, Feb. 20-22, 2002.

13. Monorchio, A., G. Manara, U. Serra, G. Marola, and E. Pagana, "Design of waveguide filters by using genetically optimized frequency selective surfaces," IEEE Microwave and Wireless Component Letters, Vol. 15, No. 6, 407-409, 2005.
doi:10.1109/LMWC.2005.850482

14. Manara, G., A. Monorchio, and R. Mittra, "Frequency selective surface design based on genetic algorithm," Electronic Letters, Vol. 35, No. 17, 1400-1401, 1999.
doi:10.1049/el:19990991

15. Amabile, C., F. Costa, A. Monorchio, and E. Prati, "Analysis and design of coupled frequency selective surfaces as a novel kind of waveguide filter," Metamaterials' 2007 International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Oct. 22-26, 2007.

16. Biber, S., M. Bozzi, O. Gunther, L. Perregrini, and L.-P. Schmidt, "Design and testing of frequency selective surfaces on thick silicon substrate operating at 600 GHz," Proc. of the 35th European Microwave Conference, Vol. 1, Oct. 4-6, 2006.

17. Luebbers, R. and B. Munk, "Analysis of thick, rectangular waveguide windows with finite conductivity," IEEE Trans. on Microwave Theory and Tech., Vol. 21, No. 7, 461-468, 1973.
doi:10.1109/TMTT.1973.1128034

18. Govindaswamy, S., J. East, F. Terry, E. Topsakal, J. L. Volakis, and G. I. Haddad, "Frequency-selective surface based bandpass filters in the near-infrared region," Microwave and Optical Technology Letters, 266-269, 2004.
doi:10.1002/mop.20112

19. MacDonald, M. E., A. Alexanian, R. A. Yorfk, Z. Popovic, and E. N. Grossman, "Spectral transmittance of lossy printed resonant grid terahertz band pass filters," IEEE Trans. on Microwave Theory and Tech., Vol. 48, No. 4, 712-718, 2000.
doi:10.1109/22.841963

20. Rechberger, W., A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Optics Communications, Vol. 220, 137-141, 2003.
doi:10.1016/S0030-4018(03)01357-9

21. Bozzi, M., M. Montagna, and L. Perregrini, "MoM/BI-RME modeling of frequency selective surfaces with thick metal patches," International Conference on Electromagnetics in Advanced Applications, ICEAA '09, 327-330, 2009.
doi:10.1109/ICEAA.2009.5297426

22. Webb, D. B., E. Michielssen, and R. Mittra, "Thick frequency selective surfaces," Antennas and Propagation International Symposium, Vol. 4, 1795-1798, Chicago, USA, 1992.