Vol. 21
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-03-01
WCIP Applied to Active Plasma Circuits
By
Progress In Electromagnetics Research Letters, Vol. 21, 89-98, 2011
Abstract
The Wave Concept Iterative Procedure is validated for multi-layered substrate with frequency dependent and negative index media. By shifting the plasma frequency, reconfigurable filter design is proposed with a center frequency tunability of 25%. Sensitivity to collisional plasma is proposed.
Citation
Nathalie Raveu, Gaetan Prigent, Thierry Callegari, and Henri Baudrand, "WCIP Applied to Active Plasma Circuits," Progress In Electromagnetics Research Letters, Vol. 21, 89-98, 2011.
doi:10.2528/PIERL11010703
References

1. Brown, A. R. and G. M. Rebeiz, "A varactor tuned RF filter," IEEE Trans. Microwave Theory & Tech., Vol. 48, 1157-1160, July 2000.
doi:10.1109/22.848501

2. Tanne, G., E. Rius, F. Mahe, S. Toutain, F. Biron, L. Billonnet, B. Jarry, and P. Guillon, "Improvement in losses and size of frequency tunable coplanar filter structures using MMIC negative resistance chips for multistandard mobile communication systems," IEEE MTT-S Int. Microwave Symp. Dig., 1165-1168, Boston, MA, 2002.

3. Eriksson, A., A. Deleniv, S. Gevorgian, B. Lumetzberger, and N. Billstrom, "GaAs varactor tuned filter for low power applications," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 4, 2211-2214, 2005.
doi:10.1109/MWSYM.2005.1517191

4. Nath, J., D. Ghosh, W. Fathelbab, J. P. Maria, A. I. Kingon, P. D. Franzon, and M. B. Steer, "A tunable combline bandpass filter using barium strontium titanate interdigital varactors on an alumina substrate," IEEE MTT-S Int. Microwave Symp. Dig., 4, June 12-17, 2005.

5. Vendik, I., O. Vendik, V. Pleskachev, and A. Svishchev, "Design of tunable ferroelectric filters with a constant fractional bandwidth," IEEE MTT-S Digest, Vol. 3, 1461-1464, 2001.

6. Pleskachev, V. and I. Vendik, "Figure of merit of tunable ferroelectric planar filters," 33rd European Microwave Conference, Munich, 2003.

7. Martin, N., P. Laurent, G. Prigent, P. Gelin, and F. Huret, "Technological evolution and performances of a tuneable phase-shifter using liquid crystal," Microwave and Optical Technology Letters, Vol. 43, No. 4, 338-341, November 2004.
doi:10.1002/mop.20463

8. Salahun, E., G. Tanne, P. Queffelec, P. Gelin, A. L. Adeno, and O. Ache, "Ferromagnetic composite-based and magnetically tunable microwave devices," IEEE MTT-S Digest, 1185-1188, 2002.

9. Salahun, E., G. Tanne, and P. Queffelec, "Enhancement of design parameters for tunable ferromagnetic composite-based microwave devices: Application to filtering devices," Proc. IEEE MTT-Symposium 2004, Fort Worth, USA, 2004.

10. Tsutsumi, M. and T. Fukusako, "Magnetically tunable super-conducting microstrip resonators using yttrium iron garnet single crystals," IEEE MTT-S Digest, 1491-1494, 1997.

11. Starikovskii, A. Y., A. A. Nikipelov, M. M. Nudnova, and D. V. Roupassov, "SDBD plasma actuator with nanosecond pulse-periodic discharge," Plasma Sources Sci. Technol., Vol. 18, No. 3, 034015, 17 pages, 2009.
doi:10.1088/0963-0252/18/3/034015

12. Stix, T. H., Waves in Plasmas, Springer, December 1, 1992.

13. Baudrand, H. and R. S. N'Gongo, "Application of wave concept iterative procedure in planar circuits,", Special Issue on Recent Research Developments in Microwave Theory and Techniques, Vol. 1, 187-197, Transworld Research Network, January 1999.

14. Wane, S., D. Bajon, H. Baudrand, and P. Gamand, "A new full wave hybrid differential-integral approach for the investigation of multilayer structures including nonuniformly doped diffusion," IEEE Trans. on MMT, Vol. 53, No. 1, 200-214, January 2005.
doi:10.1109/TMTT.2004.839905

15. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves," Journal of Applied Physics, Vol. 101, 073304, 2007.
doi:10.1063/1.2713939

16. Quendo, C., E. Rius, and C. Person, "Narrow bandpass filter using dual behavior resonator," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 3, 734-743, March 2003.
doi:10.1109/TMTT.2003.808729