Vol. 24
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-05-20
Dual-Band Monopole Antenna with Omega Particles for Wireless Applications
By
Progress In Electromagnetics Research Letters, Vol. 24, 27-34, 2011
Abstract
A new design of dual-band antenna for DCS/ PCS/ UMTS/ WLAN/ WiMAX applications is proposed. Using two metamaterials omega-shaped structures, a good impedance matching the dual-band mode is obtained. The proposed prototype antenna is fabricated on a 1.5mm thick FR4 epoxy substrate with a relative dielectric permittivity εr= 4.4, and loss tangent tanσ = 0.02. Good monopole-like radiation patterns and antenna gains over the operating bands have also been observed. Effects of each omega particle on the antenna performance and their coupling are all examined and discussed.
Citation
Michel Audrey Abaga Abessolo Ahmed El Moussaoui Noura Aknin , "Dual-Band Monopole Antenna with Omega Particles for Wireless Applications," Progress In Electromagnetics Research Letters, Vol. 24, 27-34, 2011.
doi:10.2528/PIERL11033103
http://www.jpier.org/PIERL/pier.php?paper=11033103
References

1. Hwang, S.-H., J.-I. Moon, W.-I. Kwak, and S.-O. Park, "Printed compact dual band antenna for 2.4 and 5 GHz ISM band applications," Electron. Lett., Vol. 40, No. 25, 1568-1569, 2004.
doi:10.1049/el:20046579

2. Cho, Y.-J., S.-H. Hwang, and S.-O. Park, "Printed antenna with folded non-uniform meander line for 2.4/5 GHz WLAN bands," Electron. Lett. , Vol. 41, No. 14, 786-788, 2005.
doi:10.1049/el:20051347

3. Janapsatya, J., K. P. Esselle, and T. S. Bird, "A dual-band and wideband planar inverted-F antenna for WLAN applications," Microw. Opt. Techn. Lett., Vol. 50, No. 1, 138-141, 2008.
doi:10.1002/mop.23016

4. Ang, I., Y. X. Guo, and Y. W. Chia, "Compact internal quad-band antenna for mobile phones," Micro. Opt. Technol. Lett., Vol. 38, No. 3, 217-223, 2003.
doi:10.1002/mop.11019

5. Bhatti, R. A., N. A. Nguyen, V. A. Nguyen, and S. Park, "Design of a compact internal antenna for multi-band personal communication handsets," IEEE Proc. of Asia-Pacific Microw. Conf., 1-4, 2007.
doi:10.1109/APMC.2007.4554918

6. Jing, X., Z. Du, and K. Gong, "A compact multiband planar antenna for mobile handsets," IEEE Ant. and Wireless Prop., Vol. 5, 343-345, 2006.
doi:10.1109/LAWP.2006.880690

7. Chi, Y.-W. and K.-L.Wong, "Compact multiband folded loop chip antenna for small-size mobile phone," IEEE Trans. Ant. Prop., Vol. 56, No. 12, 3797-3803, 2008.
doi:10.1109/TAP.2008.2007280

8. Bulu, I., H. Caglayan, and E. Ozbay, "Experimental demonstration of subwavelength focusing of electromagnetic waves by labyrinth-based two-dimensional metamaterials," Opt. Lett., Vol. 31, No. 6, 2006.
doi:10.1364/OL.31.000814

9. Duan, Z., S. Qu, and Y. Hou, "Electrically small antenna inspired by spired split ring resonator," Progress In Electromagnetics Research Letters, Vol. 7, 47-57, 2009.
doi:10.2528/PIERL09012005

10. Braaten, B. D., R. P. Scheeler, M. Reich, R. M. Nelson, C. Bauer-Reich, J. Glower, and G. J. Owen, "Compact metamaterial-based UHF RFID antennas: Deformed omega and split-ring resonator structures," Aces Journal, Vol. 25, No. 6, 530-542, 2010.

11. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Ant. Prop., Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401

12. Velselago, V., "The electrodynamics of substances with simultane ously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 1968.

13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 11, 1999.
doi:10.1109/22.798002

14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

15. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502