Vol. 24
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-08
Reflection and Transmission of Electromagnetic Wave Due to a Quasi-Fractional-Space Slab
By
Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011
Abstract
A new method is introduced to construct a slab that has electric fields with propagation properties which are equivalent to a fractional-space wave equation in two-coordinate system. While its magnetic fields have propagation properties which are equivalent to the complementary fractional-space wave equation. Analytical forms for the reflection and transmission coefficients of this slab are derived. Results of these reflection and transmission coefficients show that such quasi-fractional-space slab has spatial and frequency selectivity properties.
Citation
Ahmed Attiya , "Reflection and Transmission of Electromagnetic Wave Due to a Quasi-Fractional-Space Slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
doi:10.2528/PIERL11051105
http://www.jpier.org/PIERL/pier.php?paper=11051105
References

1. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific Publishing, 2000.
doi:10.1142/9789812817747

2. Sabatier, J., O. P. Agrawal, and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.

3. Engheta, N., "Use of fractional integration to propose some `fractional' solutions for the scalar helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

4. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 35-46, 1997.
doi:10.1109/74.632994

5. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801

6. Lakhtakia, A., "A representation theorem involving fractional derivatives for linear homogeneous chiral media," Microwave and Optical Technology Letters, Vol. 28, No. 6, 385-386, 2001.
doi:10.1002/1098-2760(20010320)28:6<385::AID-MOP1048>3.0.CO;2-L

7. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.2528/PIERL09032405

8. Hussain, A., Q. A. Naqvi, and M. Abbas, "Fractional duality and perfect electromagnetic conductor (PEMC)," Progress In Electromagnetics Research, Vol. 71, 85-94, 2007.
doi:10.2528/PIER07020702

9. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetics Research, Vol. 114, 255-269, 2011.

10. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.

11. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field in fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.

12. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

13. Ivakhnychenko, M. V. and E. I. Veliev, "Fractional operators approach in re°ection and diffraction problems," 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, TELSIKS, Vol. 254-257, No. 26-28, 2007.

14. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002

15. Zhai, Y.-B. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.