Vol. 26
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-08-16
Empirical Mixing Model for the Electromagnetic Modelling of on-Chip Interconnects
By
Progress In Electromagnetics Research Letters, Vol. 26, 1-9, 2011
Abstract
We present an empirical mixing model for rectangular cuboid metal inclusions in a host dielectric, suitable for replacing the detailed structure of a layer of on-chip interconnects with a homogeneous dielectric slab. Such an approximation is required to facilitate the accurate and efficient package-level electromagnetic modelling of complicated miniaturised systems, such as System-in-Package. Without such an approach, the direct inclusion of large areas of on-chip interconnect structures often results in intractable computation times. Our model allows us to predict the reflection (transmission) coefficient of impinging plane waves to within 3.5% (0.2%) error for incident angles up to 30o off-normal, aspect ratios 0.6-3, metal fill factors 0.3-0.6, and host dielectric constants 1-11.7, over the frequency range 1-10 GHz.
Citation
Sonia M. Holik, John M. Arnold, and Timothy David Drysdale, "Empirical Mixing Model for the Electromagnetic Modelling of on-Chip Interconnects," Progress In Electromagnetics Research Letters, Vol. 26, 1-9, 2011.
doi:10.2528/PIERL11061311
References

1. Stefanski, T. M. and T. D. Drysdale, "Parallel implementation of the ADI-FDTD method," Microwave Opt. Technol. Lett., Vol. 51, No. 5, 1298-1304, 2009.
doi:10.1002/mop.24310

2. Choi , J., M. Swaminathan, B. Beker, and R. Master, "Modeling of realistic on-chip power grid using FDTD method," Proc. IEEE Int. Sym. Electromagnetic Compatibility, Vol. 1, 238-243, 2002.

3. Fontanelly , A., "System-in-Package technology: Opportunities and challenges," Proc. IEEE 9th International Symposium on Quality Electronic Design (ISQED'08), 589-593, 2008.
doi:10.1109/ISQED.2008.4479803

4. Sham , M. L., Y. C. Chen, J. R. Leung, and T. Chung, "Challenges and opportunities in system-in-package business," Proc. IEEE 7th International Conference on Electronics Packaging Technology (ICEPT'06), 1-5, 2006.
doi:10.1109/ICEPT.2006.359838

5. Trigas, C., "Design challenges for system-in-package vs system-on-chip," Proc. IEEE Custom Integrated Circuit Conference (CICC'03), 663-666, 2003.

6. Karkkainen, K., A. Sihvola, and K. Nikoskinen, "Analysis of three-dimensional dielectric mixture with finite difference method," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 5, 1013-1018, 2001.
doi:10.1109/36.921419

7. Chylek, P. and V. Srivastava, "Effective dielectric constant of a metal-dielectric composite," Phys. Rev. B, Vol. 30, No. 2, 1008-1009, 1984.
doi:10.1103/PhysRevB.30.1008

8. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Publishing, London, UK, 1999.
doi:10.1049/PBEW047E

9. Lakshminarayann, S., P. J. Wright, and J. Pallinti, "Design rule methodology to improve the manufacturability of the copper CMP process," Proc. IEEE International Interconnect Technology Conference (IITC'02), 99-102, 2002.
doi:10.1109/IITC.2002.1014900

10. Zarkesh-Ha, P., S. Lakshminarayann, K. Doniger, W. Loch, and P. J. Wright, "Impact of interconnect pattern density information on a 90nm technology ASIC design flow," Proc. IEEE 4th International Symposium on Quality Electronic Design (ISQED'03), 405-409, 2003.

11. International Technology Roadmap for Semiconductors, Interconnect and Edition 2007, , http://www.itrs.net/.

12. Rytov, S. M., "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP, Vol. 2, 466-475, 1956.

13. Maxwell-Garnett, J. C., "Colours in metal glasses and in metallic films," Phil. Trans. R. Soc. London, Vol. 203, 385-420, 1904.

14. Holik, , S. M. and T. D. Drysdale, "Effective medium approximation for electromagnetic compatibility analysis of integrated circuits," Proc. 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, 413-415, 2008.

15. Holik, S. M. and T. D. Drysdale, "Simplified model of a layer of interconnects under a spiral inductor," Journal of Electromagnetic Analysis and Applications, Vol. 3, No. 6, 187-190, 2011.
doi:10.4236/jemaa.2011.36031

16. Holik , S. M. and T. D. Drysdale, "Simplified model for on-chip interconnects in electromagnetic modelling of system-in-package," Proc. 12th International Conference on Electromagnetics in Advanced Applications, 541-544, 2010.
doi:10.1109/ICEAA.2010.5653910

17. GSolver5.1, Grating Solver Development Company Co., , http://www.gsolver.com/.

18. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic masostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

19. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge University Press, Cambridge, UK, 1999.

20. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3-D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.
doi:10.1163/156939309790109261

21. Sullivan , D. M., "Frequency-dependent FDTD methods using Z-transform," IEEE Trans. Antennas Propagat., Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455

22. Collin, , S., F. Pardo, R. Teissier, and J. L. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt., Vol. 4, 154-160, 2002.
doi:10.1088/1464-4258/4/5/364

23. Pilozzi, L., A. D'Andrea, and H. Fenniche, "Mirror effect at the Brewster angle in semiconductor rectangular gratings," Phys. Rev. B, Vol. 64, 235319-1-8, 2001.

24. Barbara, A., P. Quemerais, E. Bustarret, T. Lopez-Rios, and T. Fournier, "Electromagnetic resonances of sub-wavelength rectangular metallic gratings," Eur. Phys. J. D, Vol. 23, 143-154, 2003.
doi:10.1140/epjd/e2003-00025-9