Vol. 28
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-11-29
Three-Dimensional FDTD Analysis of the Dual-Band Implantable Antenna for Continuous Glucose Monitoring
By
Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012
Abstract
The finite difference time domain (FDTD) method is widely used as a computational tool to simulate the electromagnetic wave propagation in biological tissues. When expressed in terms of Debye parameters, dispersive biological tissues dielectric properties can be efficiently incorporated into FDTD codes. In this paper, FDTD formulation with nonuniform grid is presented to simulate a dual medical implant communications service (MICS) (402-405 MHz) and industrial, scientific, and medical (ISM) (2.4--2.48\,GHz) band implantable antenna for continuous glucose-monitoring applications. In addition, we present computationally simpler two-pole Debye models that retain the high accuracy of the Cole-Cole Model for dry skin in MICS and ISM bands. The reflection coefficient simulation result with Debye dispersion is presented and compared with the published results. FDTD was also applied to analyze antenna's far-field.
Citation
Zahra Noroozi, and Farrokh Hojjat-Kashani, "Three-Dimensional FDTD Analysis of the Dual-Band Implantable Antenna for Continuous Glucose Monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113
References

1. Cavuoto, J., "Neural engineering's image problem," IEEE Spectr., Vol. 41, No. 4, 32-37, Apr. 2004.
doi:10.1109/MSPEC.2004.1279191

2. Furse, C. M., "Design of an antenna for pacemaker communication," Microw. RF, Vol. 39, No. 3, 73-76, Mar. 2000.

3. Schuster, J. and R. Luebbers, "An FDTD algorithm for transient propagation in biological tissue with a cole-cole dispersion relation," IEEE AP/URSI Int. Symp. Dig., Vol. 4, 1988-1991, Jun. 1998.

4. Jacobsen, S. and P. R. Stauffer, "Multifrequency radiometric determination of temperature profiles in a lossy homogenous phantom using a dual-mode antenna with integral water bolus," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1737-1746, Jul. 2002.
doi:10.1109/TMTT.2002.800424

5. Scanlon, W. G., N. E. Evans, and J. B. Burns, "FDTD analysis of closecoupled 418 MHz radiating devices for human biotelemetry," Phys. Med. Biol., Vol. 44, 335-345, 1999.
doi:10.1088/0031-9155/44/2/003

6. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1934-1943, Aug. 2004.
doi:10.1109/TMTT.2004.832018

7. Soontornpipit, P., C. Y. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1944-1951, Aug. 2004.
doi:10.1109/TMTT.2004.831976

8. Warty, R. and M. R. Tofighi, "Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 10, Oct. 2008.
doi:10.1109/TMTT.2008.2004254

9. Kazuyuki, W., M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. Antennas Propag., Vol. 57, No. 4, Apr. 2009.

10. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

11. Gabriel , S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

12. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

13. Wuren , T., T. Takai, M. Fujii, and I. Sakagami, "Effective 2-Debye-pole FDTD model of electromagnetic interaction between whole human body and UWB radiation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 483-485, Jul. 2007.
doi:10.1109/LMWC.2007.899295

14. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 12, Dec. 2007.
doi:10.1109/LMWC.2007.910465

15. Fujii, M., R. Fujii, R. Yotsuki, T. Wuren, T. Takai, and I. Sakagami, "Exploration of whole human body and UWB radiation interaction by e±cient and accurate two-Debye-pole tissue models," IEEE Trans. Antennas Propag., Vol. 58, No. 2, Nov. 2010.
doi:10.1109/TAP.2009.2024968

16. Guo, B., J. Li, and H. Zmuda, "A new FDTD formulation for wave propagation in biological media with cole-cole model," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 12, Dec. 2006.
doi:10.1109/LMWC.2006.885583

17. Mrozowski , M. and M. A. Stuchly, "Parametrization of media dispersive properties for FDTD," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1438-1439, Sep. 1997.
doi:10.1109/8.623134

18. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 1001-1008, Apr. 2008.
doi:10.1109/TMTT.2008.919373

19. Elsherbeni, A. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with Matlab Simulations, 484, 2009.

20. Mrozowski, M. and M. A. Stuchly, "Parameterization of media dispersive properties for FDTD," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1438-1439, 1997.
doi:10.1109/8.623134

21. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, MA, 2005.

22. Abd El-Raouf, H. E., V. V. S. Prakash, J. Yeo, and R. Mittra, "FDTD simulation of a microstrip phased array with a coaxial feed," IEE Proc. --- Microw. Antennas Propag., Vol. 151, No. 3, Jun. 2004.

23. Hajiaboli, A. and M. Popovic, "FDTD subcell modeling of the ineer conductor of the coaxial feed: Accuracy and convergence analysis," IEEE Trans. Magn., Vol. 43, No. 4, 1361-1364, Apr. 2007.
doi:10.1109/TMAG.2006.891009

24. Riku, M. M. and A. K. Markku, "A stabilized resistive voltage source for FDTD thin-wire models," IEEE Trans. Antennas Propag., Vol. 51, No. 7, Jul. 2003.

25. Taflove, A. and K. Umashankar, "Radar cross section of general three-dimensional structures," IEEE Trans. Electromagn.Compat., Vol. 25, 433-440, 1983.
doi:10.1109/TEMC.1983.304133

26. Huynh, M. C. and W. Stutzman, "Ground plane effects on planar inverted-f antenna (PIFA) performance," Proc. Inst. Elect. Eng. Microw., Antennas Prop., Vol. 150, No. 4, 209-213, Aug. 2003.
doi:10.1049/ip-map:20030551