Vol. 26
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-09-06
Improvement of Surface Electromagnetic Waves Attenuation with Resistive Loading
By
Progress In Electromagnetics Research Letters, Vol. 26, 143-152, 2011
Abstract
Electromagnetic properties of conventional radar absorbing materials (RAM) make it difficult to use them to provide remarkable surface electromagnetic waves (SEMW) attenuation with thin thickness at low radar frequencies such as in the UHF and L bands. In this paper, a composite structure realized by a grounded RAM slab covered by a resistive sheet is proposed. The use of a resistive sheet results in a significant increase of SEMW attenuation performance at low frequency, but almost no increase in its thickness. The electromagnetic scattering properties for a target coated with the RAM with/without covered by a resistive sheet are considered for interpreting the improvement of SEMW attenuation with resistive loading. Using a method-of-moments (MoM) computational scheme, we explore the performance of the proposed composite structure as radar backscattering suppression for a metal slab at low radar frequencies. It is found that the RAM with resistive loading has significantly increased SEMW attenuation at low frequencies, and advances the large incidence angle or grazing angle mono-static radar cross section (RCS) reduction of the coating slab further than the RAM without resistive loading case.
Citation
Haiyan Chen, Long-Jiang Deng, Pei-Heng Zhou, Jianliang Xie, and Zhi-Wei Zhu, "Improvement of Surface Electromagnetic Waves Attenuation with Resistive Loading," Progress In Electromagnetics Research Letters, Vol. 26, 143-152, 2011.
doi:10.2528/PIERL11072202
References

1. Ivrissimtzis, L. P. and R. J. Marhefka, "Edge-wave diffraction for flat-plate structures," IEE Proc. --- Microwaves Antennas Propagation, Vol. 141, No. 1, 30-36, Feb. 1994.
doi:10.1049/ip-map:19949764

2. Gustafsson, M., "RCS reduction of integrated antenna arrays with resistive sheets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 27-40, 2006.
doi:10.1163/156939306775777323

3. Burleson, R. A., A. J. Terzuoli, E. K. English, and L. W. Henderson, "Tapered periodic edge treatments for diffraction reduction," Antennas and Propagation Society International Symposium, AP-S. Digest, 590-593, 1994.

4. Stroobandt, S., "The characterization of surface waves on low-observable structures,", MSc thesis, University of Hull, Aug. 1997.

5. Ufimtsev, P. Y., R. T. Ling, and J. D. Scholler, "Transformation of surface waves in homogeneous absorbing layers," IEEE Trans. on Antennas and Propagation, Vol. 48, No. 2, 214-222, Feb. 2000.
doi:10.1109/8.833070

6. Ling , R. T., J. D. Scholler, and P. Y. Ufimtsev, "The propagation and excitation of surface waves in an absorbing layer," Progress In Electromagentics Research, Vol. 19, 49-91, 1998.
doi:10.2528/PIER97071800

7. Ufimtsev , P. Y. and R. T. Ling, "New results for the properties of TE surface waves in absorbing layers," IEEE Trans. on Antennas and Propagation, Vol. 49, No. 10, 1445-1452, Oct. 2001.
doi:10.1109/8.954933

8. Paknys , R. and D. R. Jackson, "The relation between creeping waves, leaky waves, and surface waves," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 3, 898-907, Mar. 2005.
doi:10.1109/TAP.2004.842625

9. Neve , M. J. and R. Paknys, "A technique for approximating the location of surface- and leaky-wave poles for a lossy dielectric slab," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 1, 115-120, Jan. 2006.
doi:10.1109/TAP.2005.861530

10. Ruey, B. H. and S. T. Peng, "Surface-wave suppression of resonance-type periodic structures," IEEE Trans. on Antennas and propagation, Vol. 51, No. 6, 1221-1229, Jun. 2003.
doi:10.1109/TAP.2003.811470

11. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 1, 82-89, Jan. 2006.
doi:10.1109/TAP.2005.861575

12. Chao , W., D.-B. Yan, and N.-C. Yuan, "Application of high impedance electromagnetic surface to Archimedean planner spiral antenna," Microwave and Optical Technology Letters, Vol. 49, No. 1, 129-131, Jan. 2007.
doi:10.1002/mop.22097

13. Richmond, J. H., "Propagation of surface waves on a thin resistive sheet or a coated substrate," Radio Science, Vol. 22, No. 5, 825-831, 1987.
doi:10.1029/RS022i005p00825

14. Shively, D., "Surface waves on a grounded dielectric slab covered by a resistive sheet," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 3, 348-350, 1993.
doi:10.1109/8.233127

15. Jenn, D. C., Radar and Laser Cross Section Engineering, 2nd Ed., 76-77, Washington, 2005.

16. Chen, H.-Y., P. H. Zhou, L. Chen, and L. J. Deng, "Study on the properties of surface waves in coated RAM layers and monostatic RCSR performances of the coated slab," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.
doi:10.2528/PIERM09122101

17. Eugene, F. K., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, 2nd Ed., SciTech Publishing, Inc., 2004.

18. Hossein, M. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. on Antennas and Propagation, Vol. 48, No. 10, 1594-1606, Oct. 2000.
doi:10.1109/8.899676

19. Sjoberg , D. and M. Gustafsson, "Realization of a matching region between a radome and a ground plane," Progress In Electromagnetics Research Letters, Vol. 17, 1-10, 2010.
doi:10.2528/PIERL10071906

20. Chen, , H.-Y., L. J. Deng, and P. H. Zhou, "Suppression of surface wave from ¯nite conducting surfaces with impedance loading at margins," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1977-1989, 2010.