Vol. 27
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-10-19
Tunable Multi-Channel Filtering Using 1-d Photonic Quantum Well Structures
By
Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011
Abstract
In the present study, we show that it is possible to achieve multi-channel filters in one-dimensional photonic crystals using photonic quantum well structures. The photonic quantum well structure consists of different 1-D photonic structures. We use (AB)8/Cn/(BA)8 structure, where A, B and C are different materials. The number of defect layers (C) can be utilized to tune the multi-channel filtering. The filter range can be tuned for desired wavelength with the change in angle of incidence for multi-channel filtering.
Citation
Bhuvneshwer Suthar, and Anami Bhargava, "Tunable Multi-Channel Filtering Using 1-d Photonic Quantum Well Structures," Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
doi:10.2528/PIERL11072208
References

1. Yablonovitch , E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Dowling , J. P., "Mirror on the wall: You're omnidirectional after all?," Science, Vol. 282, 1841-1843, 1998.
doi:10.1126/science.282.5395.1841

4. Yablonovitch, , E., "Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters," Optics Letters, Vol. 23, 1648-1649, 1998.
doi:10.1364/OL.23.001648

5. Chigrin , D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849

6. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopou-los, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

7. Lusk , D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Opt. Commun., Vol. 198, 273-279, 2001.
doi:10.1016/S0030-4018(01)01531-0

8. Ibanescu, M., Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science, Vol. 289, 415-418, 2000.
doi:10.1126/science.289.5478.415

9. Srivastava , S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fluorescence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202

10. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

11. Bhargava , A. and B. Suthar, "Localized modes in chalcogenide photonic multilayers with As-S-Se defect layer," Chalcogenide Letters, Vol. 6, No. 10, 529-533, 2009.

12. Villar, I. D., I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Optics Express, Vol. 11, 430-436, 2003.
doi:10.1364/OE.11.000430

13. Zhang, Y. and B. Y. Gu, "Aperiodic photonic quantum-well structures for multiple channeled filtering at arbitrary preassigned frequencies," Optics Express, Vol. 12, 5910-5915, 2004.
doi:10.1364/OPEX.12.005910

14. Xiao, F., B. Juswardy, and K. Alameh, "Tunable photonic microwave filters based on opto-VLSI processors," IEEE Photonics Technology Letters, Vol. 21, 751-753, 2009.
doi:10.1109/LPT.2009.2016979

15. Yang, W. X., J. M. Hou, and R. K. Lee, "Ultraslow bright and dark solitons in semiconductor quantum wells," Phys. Rev. A, Vol. 77, (033838)1-7, 2008.

16. Christmann, G., C. Coulson, J. J. Baumberg, N. T. Pelekanos, Z. Hatzopoulos, S. I. Tsintzos, and P. G. Savvidis, "Control of polariton scattering in resonant-tunneling double-quantum-well semiconductor microcavities," Phys. Rev. B, Vol. 82, (113308)1-4, 2010.

17. Schindler , C. and R. Zimmermann, "Analysis of the excitonexciton interaction in semiconductor quantum wells," Phys. Rev. B, Vol. 78, 045313, 2008.
doi:10.1103/PhysRevB.78.045313

18. Politano, A. and G. Chiarello, "Collective electronic excitations in systems exhibiting quantum well states," Surf. Rev. Lett., Vol. 16, 171-190, 2009.
doi:10.1142/S0218625X09012482

19. Politano, A. and G. Chiarello, "Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement," Chem. Phys. Lett., Vol. 494, 84-87, 2010.
doi:10.1016/j.cplett.2010.05.089

20. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Purely quadratic dispersion of surface plasmon in Ag/Ni(111): The in°uence of electron confinement," Phys. Status Solidi Rapid Res. Lett. (RRL), Vol. 2, 86-88, 2008.
doi:10.1002/pssr.200701307

21. Zhang, C., F. Qiao, J. Wan, J. Zi, and , "Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures," J. Appl. Phys., Vol. 87, 3174-3176, 2000.
doi:10.1063/1.372318

22. Qiao, F., C. Zhang, J. Wan, and J. Zi, "Photonic quantum-well structures: Multiple channeled filtering phenomena," Appl. Phys. Lett., Vol. 77, 3698-3700, 2000.
doi:10.1063/1.1330570

23. Xiang, Y., X. Dai, S. Wen, and D. Fan, "Omnidirectional and multiple-channeled high-quality filters of photonic heterostructures containing single-negative materials," J. Opt. Soc. Am. A, Vol. 24, A28-A32, 2007.
doi:10.1364/JOSAA.24.000A28

24. Chen , Y. H., "Frequency response of resonance modes in heterostructures composed of single-negative materials," J. Opt. Soc. Am. B, Vol. 25, 1794-1799, 2008.
doi:10.1364/JOSAB.25.001794

25. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York , 1988.

26. Born , M. and E. Wolf, Principle of Optics, 4th Ed., Pergamon, Oxford, 1970.