Vol. 32
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-06-08
Distortion Analysis of Electromagnetic Field Sensors in Laguerre Functions Subspace
By
Progress In Electromagnetics Research Letters, Vol. 32, 109-118, 2012
Abstract
A time-domain approach for distortion analysis of electromagnetic eld senors is developed in Laguerre functions subspace. Using Laguerre convolution preservation property, it is proved that every electromagnetic eld sensor corresponds to an equivalent discrete-time LTI system. The equivalent discrete-time system is compared to a reference system as a measure of distortion. Further, this analysis may be performed repeatedly to obtain a bandwidth-limited distortion characteristic. The method is employed to compare the distortion characteristic of an asymptotic conical dipole (ACD) to wire monopoles of various lengths. A time-domain simulation is performed in order to nd the distortion characteristics by solving an electric eld integral equation (EFIE) using the method of moments (MoM).
Citation
Shekoofeh Saboktakin, and Behzad Kordi, "Distortion Analysis of Electromagnetic Field Sensors in Laguerre Functions Subspace," Progress In Electromagnetics Research Letters, Vol. 32, 109-118, 2012.
doi:10.2528/PIERL12050801
References

1. "IEEE standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz,", IEEE Std 1309-2005 (Revision of IEEE Std 1309-1996), 2005.
doi:10.1109/TIM.2009.2030928

2. Metwally, I. A., "D-dot probe for fast-front high-voltage measurement," IEEE Trans. Instrumentation and Measurement, Vol. 59, No. 8, 2211-2219, Aug. 2010.
doi:10.1109/TEMC.2004.831892

3. Weber, T. and J. L. Ter Haseborg, "Measurement techniques for conducted HPEM signals," IEEE Trans. Electromagnetic Compatibility, Vol. 46, No. 3, 431-438, Aug. 2004.
doi:10.1109/TEMC.1982.304069

4. Shumpert, T., M. Honnell, and G. Lott, "Measured spectral amplitude of lightning sferics in the HF, VHF, and UHF bands," IEEE Trans. Electromagnetic Compatibility, Vol. 24, No. 3, 368-369, 1982.
doi:10.1109/TDEI.2008.4712677

5. Sarathi, R. and G. Koperundevi, "UHF technique for identification of partial discharge in a composite insulation under ac and dc voltages," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 15, No. 6, 1724-1730, Dec. 2008.
doi:10.1109/74.262629

6. Lamensdorf, D. and L. Susman, "Baseband-pulse-antenna techniques," IEEE Antennas and Propagation Magazine, Vol. 36, 20-30, Feb. 1994.
doi:10.1109/LAWP.2008.921350

7. Carro, P. and J. De Mingo, "Ultrawide-band antenna distortion characterization using Hermite-Gauss signal subspaces," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 267-270, 2008.

8. Saboktakin, S., B. Kordi, and , "Time-domain distortion analysis of wideband electromagnetic field sensors using Hermite-Gauss orthogonal functions," IEEE Trans. Electromagnetic Compatibility, 2011, doi:10.1109/TEMC.2011.2170997.
doi:10.1109/CDC.2010.5717196

9. Kinoshita, Y. and O. Ohta, "Continuous-time system identification using compactly-supported filter kernels generated from Laguerre basis functions," 49th IEEE Conference on Decision and Control (CDC), 4461-4466, Dec. 2010.

10. Iohvidov, I. S., "Hankel and Toeplitz Matrices and Forms Algebraic Theory," Birkhiuser, Boston, 1982.

11. Baum, C. E., "An equivalent-charge method for defining geometries of dipole antennas," Sensor and Simulation Notes, Vol. 72, 1969.
doi:10.1016/0021-9991(73)90167-8

12. Miller, E. K., A. J. Poggio, and G. J. Burke, "An integro-differential equation technique for the time-domain analysis of thin wire structures," Journal of Computational Physics, Vol. 12, 24-48, 1973.
doi:10.1007/BF01517355

13. Budke, G., "On a convolution property characterizing the Laguerre functions," Monatshefte fur Mathematik, Vol. 107, 281-285, 1989.

14. Szego, G., "Orthogonal Polynomials," American Mathematical Society Providence, New York, 1939.
doi:10.1090/S0002-9904-1944-08151-2

15. Loomis, L. H., "A short proof of the completeness of the Laguerre functions," Bulletin of the American Mathematical Society, Vol. 50, No. 6, 386-387, 1944.
doi: --- Either ISSN or Journal title must be supplied.