Vol. 38

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-26

WDM Performances of Two- and Three-Waveguide Mach-Zehnder Switches Assembled into 4x4 Matrix Router

By Giovanna Calo and Vincenzo Petruzzelli
Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013
doi:10.2528/PIERL12113007

Abstract

The performance comparison of two configurations of broadband Mach-Zehnder Switches exploiting, respectively, two and three waveguides, assembled into 4x4 matrices is reported in this paper. The simulations are performed by the Finite Element Method and the Finite Difference Beam Propagation Method. In particular, we have found that, to parity of maximum insertion loss, about equal to 1 dB for the single switch and 3 dB for the 4x4 matrix, the proposed three-waveguide configuration exhibits an almost doubled bandwidth Δλ=115 nm, making it suitable for efficient routing of the Wavelength Division Multiplexing signals over photonic Networks on Chip.

Citation


Giovanna Calo and Vincenzo Petruzzelli, "WDM Performances of Two- and Three-Waveguide Mach-Zehnder Switches Assembled into 4x4 Matrix Router," Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013.
doi:10.2528/PIERL12113007
http://www.jpier.org/PIERL/pier.php?paper=12113007

References


    1. Biberman, A. and K. Bergman, "Optical interconnection networks for high-performance computing systems," Rep. Prog. Phys, Vol. 75, 046402, 2012.
    doi:10.1088/0034-4885/75/4/046402

    2. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.

    3. Wu, C.-J., M.-H. Lee, W.-H. Chen, and T.-J. Yang, "A mid-infrared multichanneled filter in a photonic ceystal heterostructure containing negative-permittivity materials," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1360-1371, 2011.

    4. Calµo, G., A. Farinola, and V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," Journal of the Optical Society of America B, Vol. 28, 1668-1679, 2011.
    doi:10.1364/JOSAB.28.001668

    5. Green, W. M. J., M. J. Rooks, L. Sekaric, and Y. A. Vlasov, "Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator," Opt. Express, Vol. 15, 17106-17113, 2007.
    doi:10.1364/OE.15.017106

    6. Xu, Q., S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon microring silicon modulators," Opt. Express, Vol. 15, 430-436, 2007.
    doi:10.1364/OE.15.000430

    7. Liao, L., D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge, "High speed silicon Mach-Zehnder modulator," Opt. Express, Vol. 13, 3130-3135, 2005.

    8. Liu, A., L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express, Vol. 15, 660-668, 2007.
    doi:10.1364/OE.15.000660

    9. Thomson, , D. J., F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, "High contrast 40 Gbit/s optical modulation in silicon," Opt. Express, Vol. 19, 11507-11516, 2011.
    doi:10.1364/OE.19.011507

    10. Calo, G., V. Petruzzelli, L. Mescia, and F. Prudenzano, "Study of gain in photonic band gap active InP waveguides," Journal of the Optical Society of America B, Vol. 26, 2414-2422, 2009.
    doi:10.1364/JOSAB.26.002414

    11. Calµo, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 172-181, 2011.
    doi:10.1109/JQE.2010.2053838

    12. Calµo, G., D. Alexandropoulos, and V. Petruzzelli, "Active photonic band-gap switch based on GaInNAs multiquantum well," IEEE Photonics Journal, Vol. 4, No. 5, 1936-1946, 2012.
    doi:10.1109/JPHOT.2012.2220128

    13. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.

    14. Calo, G., D. Alexandropoulos, A. D'Orazio, and V. Petruzzelli, "Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides," Physica Status Solidi B, Vol. 248, 1212-1215, 2011.
    doi:10.1002/pssb.201000782

    15. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
    doi:10.2528/PIER07072903

    16. D'Alessandro, A. , F. Campoli, P. Maltese, G. Chessa, A. D'Orazio, and V. Petruzzelli, "Design of an ultrashort directional coupler with an SSFLC coupling layer," Molecular Crystals and Liquid Crystals, Vol. 320, 355-364, 1998.

    17. Moghimi, M. J., H. Ghafoori-Fard, and A. Rostami, "Analysis and design of all-optical switching in apodized and chirped Bragg gratings," Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008.
    doi:10.2528/PIERB08041303

    18. Moghimi, M. J., H. G. Fard, and A. Rostami, "Multi-wavelengths optical switching and tunable filters using dynamic superimposed photorefractive Bragg grating," Progress In Electromagnetics Research C, Vol. 3, 129-142, 2008.
    doi:10.2528/PIERC08041302

    19. Calµo, G., A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filters," IEEE Transactions on Nanotechnology, Vol. 7, 273-284, 2008.
    doi:10.1109/TNANO.2008.917848

    20. D'Orazio, A., M. De Sario, V. Ingravallo, V. Petruzzelli, and F. Prudenzano, "Infiltrated liquid crystal photonic bandgap devices for switching and tunable filtering," Fiber and Integrated Optics, Vol. 22, No. 3, 161-172, 2003.
    doi:10.1080/01468030390111968

    21. Calµo, G., A. D'Orazio, and V. Petruzzelli, "Broadband Mach-Zehnder switch for photonic networks on chip," Journal of Lightwave Technology, Vol. 30, No. 7, 944-952, 2012.
    doi:10.1109/JLT.2012.2184739

    22. Parini, A., L. Ramini, G. Bellanca, and D. Bertozzi, "Abstract modeling of switching elements for optical networks-on-chip with technology platform awareness," INA-OCMC: 5th International Workshop on Interconnection Network Architecture: On-Chip, Multi-Chip, 2011.

    23. Passaro, V. M. N. and F. Dell'Olio, "Scaling and optimization of MOS optical modulators in nanometer SOI waveguides," IEEE Transactions on Nanotechnology, Vol. 7, 401-408, 2008.
    doi:10.1109/TNANO.2008.920207

    24. Calµo, G. and V. Petruzzelli, "Photonic interconnects for chip multiprocessing architectures," 2012 14th International Conference on Transparent Optical Networks (ICTON), 1-4, July 2-5, 2012.

    25. Huang, W., C. Xu, S. Chu, and S. K. Chaudhuri, "The finite-difference vector beam propagation method: Analysis and assessment," J. Lightw. Technol., Vol. 10, 295-305, 1992.
    doi:10.1109/50.124490

    26. Soref, R. and B. R. Bennett, "Electrooptical effects in silicon IEEE Journal of Quantum Electronics,", Vol. 23, 123-129, 1987.

    27. Yang, M., W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, "Non-blocking 4 x 4 electro-optic silicon switch for on-chip photonic networks," Opt. Express, Vol. 19, 47-54, 2011.
    doi:10.1364/OE.19.000047

    28. Thompson, R. A. and D. K. Hunter, "Elementary photonic switching modules in three divisions," IEEE Journal of Selected Areas in Communications, Vol. 14, No. 2, 362-372, 1996.
    doi:10.1109/49.481944