Vol. 37

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-01-14

Waveguide Filter Using Frequency Selective Surface with Miniaturized Element

By Yuan Yang, Hang Zhou, Qian Li, and Hao Li
Progress In Electromagnetics Research Letters, Vol. 37, 83-90, 2013
doi:10.2528/PIERL12120403

Abstract

In this paper, a waveguide filter using miniaturized-element frequency selective surface (FSS) is presented. The proposed FSS is composed of periodic array of metallic patches separated by small gaps and metallic lines. The array of patches constitutes a capacitive surface and the lines a coupled inductive surface, which together act as a resonant structure. At about 5.0 GHz, a narrow bandpass response is designed. Dimensions of the FSS element are much smaller than the operating wavelength, which is less than 1/13λ. For this miniaturized element, grating lobes are restrained and do not appear event to 25 GHz. Moreover, the FSS has stable performances for various incident angles. Design procedure and measurement results of the FSS are presented and discussed.

Citation


Yuan Yang, Hang Zhou, Qian Li, and Hao Li, "Waveguide Filter Using Frequency Selective Surface with Miniaturized Element," Progress In Electromagnetics Research Letters, Vol. 37, 83-90, 2013.
doi:10.2528/PIERL12120403
http://www.jpier.org/PIERL/pier.php?paper=12120403

References


    1. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," Wiley, 2000.

    2. Wu, T. K., "Frequency Selective Surfaces and Grid Arrays," Wiley, 1995.

    3. Winkler, S. A., W. Hong, M. Bozzi, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 58, No. 4, 1202-1213, 2010.
    doi:10.1109/TAP.2010.2041170

    4. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Trans. on Antennas and Propag., Vol. 55, No. 10, 2931-2934, 2007.
    doi:10.1109/TAP.2007.905980

    5. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propag., Vol. 55, No. 5, 1239-1245, 2007.
    doi:10.1109/TAP.2007.895567

    6. Moallem, M. and K. Sarabandi, "Miniaturized-element frequency selective surfaces for millimeter-wave to terahertz applications," IEEE Trans. on Terahertz Science Tech., Vol. 2, No. 3, 333-339, 2012.
    doi:10.1109/TTHZ.2012.2189910

    7. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surface by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
    doi:10.2528/PIER11051305

    8. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surface using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
    doi:10.2528/PIER11081902

    9. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. de Zutter, and W. de Raedt, "Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
    doi:10.2528/PIER09122104

    10. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez Lopez, "An active ring slot with RF Mems switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.

    11. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2998-3005, 2011.
    doi:10.1109/TAP.2011.2158779

    12. Zhou, H., et al., "Ultra-wideband frequency selective surface," Electron. Lett., Vol. 48, No. 1, 11-13, 2012.
    doi:10.1049/el.2011.3271

    13. Pelton, E. L. and B. A. Munk, "A streamlined metallic radome," IEEE Trans. on Antennas and Propag., Vol. 22, No. 6, 799-803, 1974.
    doi:10.1109/TAP.1974.1140896

    14. Zhou, H., S. Qu, B. Lin, J. Wang, H. Ma, and Z. Xu, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE Trans. on Antennas and Propag., Vol. 60, No. 6, 3040-3045, 2012.
    doi:10.1109/TAP.2012.2194648

    15. Yuan, Y., X.-H. Wang, and H. Zhou, "Dual-band frequency selective surface with miniaturized element in low frequencies," Progress In Electromagnetics Research Letters, Vol. 33, 167-175, 2012.

    16. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. on Antennas and Propag., Vol. 26, No. 4, 536-542, 1978.
    doi:10.1109/TAP.1978.1141887

    17. Baena, J. D., L. Jelinek, R. Marques, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators," Appl. Phys. Lett., Vol. 91, 191105, 2007.
    doi:10.1063/1.2806915

    18. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements," IEE Pro. --- Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
    doi:10.1049/ip-map:19941322

    19. Lockyers, D. S., J. C. Vardaxpglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Pro. --- Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
    doi:10.1049/ip-map:20000799

    20. Pous, R. and D. M. Pozar, "A frequency-selective surface using coupled microstrip patches," IEEE Trans. on Antennas and Propag., Vol. 39, No. 12, 1763-1769, 1991.
    doi:10.1109/8.121598

    21. Tamijani, A. A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1781-1789, 2004.
    doi:10.1109/TMTT.2004.831572

    22. Behdad, N., M. A.-Joumayly, and M. Salehi, "A low-profile third-order bandpass frequency selective surface," IEEE Trans. on Antennas and Propag., Vol. 57, No. 2, 460-466, 2009.
    doi:10.1109/TAP.2008.2011202

    23. Al-Joumayly, M. and N. Behdad, "A new technique for design of low-profile, second-order, band-pass frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 57, No. 2, 452-459, 2009.
    doi:10.1109/TAP.2008.2011382

    24. Al-Joumayly, M/ and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non resonant constituting elements," IEEE Trans. on Antennas and Propag., Vol. 58, No. 12, 4033-4041, 2010.
    doi:10.1109/TAP.2010.2078474

    25. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
    doi:10.1109/TAP.2005.860010

    26. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 12, 2481-2487, 2007.
    doi:10.1109/TMTT.2007.910085

    27. Luo, G. Q. , W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun, "Triband frequency selective with periodic cell perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 2007.
    doi:10.1109/LMWC.2007.897793

    28. Parker, E. A. and A. N. A. EI Sheikh, "Convoluted array elements and reduced size unit cells for frequency selective," IEE Pro. --- Micro. Antennas Propag., Vol. 138, No. 1, 19-22, 1991.
    doi:10.1049/ip-h-2.1991.0004

    29. Parker, E. A., A. N. A. EI Sheikh, and A. C. de C. Lima, "Convoluted frequency-selective array elements derived from linear and crossed dipoles," IEE Pro. --- Micro. Antennas Propag., Vol. 140, No. 5, 378-380, 1993.
    doi:10.1049/ip-h-2.1993.0060

    30. Sanz-lzquierdo, B., E. A. Parker, J.-B. Roberson, and J. C. Batchelor, "Singly and dual polarized convoluted frequency selective structures," IEEE Trans. on Antennas and Propag., Vol. 58, No. 3, 690-696, 2010.
    doi:10.1109/TAP.2009.2039321