Vol. 37
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-01-14
Waveguide Filter Using Frequency Selective Surface with Miniaturized Element
By
Progress In Electromagnetics Research Letters, Vol. 37, 83-90, 2013
Abstract
In this paper, a waveguide filter using miniaturized-element frequency selective surface (FSS) is presented. The proposed FSS is composed of periodic array of metallic patches separated by small gaps and metallic lines. The array of patches constitutes a capacitive surface and the lines a coupled inductive surface, which together act as a resonant structure. At about 5.0 GHz, a narrow bandpass response is designed. Dimensions of the FSS element are much smaller than the operating wavelength, which is less than 1/13λ. For this miniaturized element, grating lobes are restrained and do not appear event to 25 GHz. Moreover, the FSS has stable performances for various incident angles. Design procedure and measurement results of the FSS are presented and discussed.
Citation
Yuan Yang, Hang Zhou, Qian Li, and Hao Li, "Waveguide Filter Using Frequency Selective Surface with Miniaturized Element," Progress In Electromagnetics Research Letters, Vol. 37, 83-90, 2013.
doi:10.2528/PIERL12120403
References

1. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," Wiley, 2000.

2. Wu, T. K., "Frequency Selective Surfaces and Grid Arrays," Wiley, 1995.

3. Winkler, S. A., W. Hong, M. Bozzi, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 58, No. 4, 1202-1213, 2010.
doi:10.1109/TAP.2010.2041170

4. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Trans. on Antennas and Propag., Vol. 55, No. 10, 2931-2934, 2007.
doi:10.1109/TAP.2007.905980

5. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. on Antennas and Propag., Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

6. Moallem, M. and K. Sarabandi, "Miniaturized-element frequency selective surfaces for millimeter-wave to terahertz applications," IEEE Trans. on Terahertz Science Tech., Vol. 2, No. 3, 333-339, 2012.
doi:10.1109/TTHZ.2012.2189910

7. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surface by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305

8. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surface using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902

9. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. de Zutter, and W. de Raedt, "Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.
doi:10.2528/PIER09122104

10. Martinez-Lopez, R., J. Rodriguez-Cuevas, A. E. Martynyuk, and J. I. Martinez Lopez, "An active ring slot with RF Mems switchable radial stubs for reconfigurable frequency selective surface applications," Progress In Electromagnetics Research, Vol. 128, 419-440, 2012.

11. Raspopoulos, M. and S. Stavrou, "Frequency selective buildings through frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 59, No. 8, 2998-3005, 2011.
doi:10.1109/TAP.2011.2158779

12. Zhou, H., S. Qu, J. Wang, et al. "Ultra-wideband frequency selective surface," Electron. Lett., Vol. 48, No. 1, 11-13, 2012.
doi:10.1049/el.2011.3271

13. Pelton, E. L. and B. A. Munk, "A streamlined metallic radome," IEEE Trans. on Antennas and Propag., Vol. 22, No. 6, 799-803, 1974.
doi:10.1109/TAP.1974.1140896

14. Zhou, H., S. Qu, B. Lin, J. Wang, H. Ma, and Z. Xu, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE Trans. on Antennas and Propag., Vol. 60, No. 6, 3040-3045, 2012.
doi:10.1109/TAP.2012.2194648

15. Yuan, Y., X.-H. Wang, and H. Zhou, "Dual-band frequency selective surface with miniaturized element in low frequencies," Progress In Electromagnetics Research Letters, Vol. 33, 167-175, 2012.

16. Luebbers, R. J. and B. A. Munk, "Some effects of dielectric loading on periodic slot arrays," IEEE Trans. on Antennas and Propag., Vol. 26, No. 4, 536-542, 1978.
doi:10.1109/TAP.1978.1141887

17. Baena, J. D., L. Jelinek, R. Marques, J. J. Mock, J. Gollub, and D. R. Smith, "Isotropic frequency selective surfaces made of cubic resonators," Appl. Phys. Lett., Vol. 91, 191105, 2007.
doi:10.1063/1.2806915

18. Wakabayashi, H., M. Kominami, H. Kusaka, and H. Nakashima, "Numerical simulations for frequency-selective screens with complementary elements," IEE Pro. --- Micro. Antennas Propag., Vol. 141, No. 6, 477-482, 1994.
doi:10.1049/ip-map:19941322

19. Lockyers, D. S., J. C. Vardaxpglou, and R. A. Simpkin, "Complementary frequency selective surfaces," IEE Pro. --- Micro. Antennas Propag., Vol. 147, No. 6, 501-507, 2000.
doi:10.1049/ip-map:20000799

20. Pous, R. and D. M. Pozar, "A frequency-selective surface using coupled microstrip patches," IEEE Trans. on Antennas and Propag., Vol. 39, No. 12, 1763-1769, 1991.
doi:10.1109/8.121598

21. Tamijani, A. A., K. Sarabandi, and G. M. Rebeiz, "Antenna-filter-antenna arrays as a class of bandpass frequency-selective surfaces," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1781-1789, 2004.
doi:10.1109/TMTT.2004.831572

22. Behdad, N., M. A.-Joumayly, and M. Salehi, "A low-profile third-order bandpass frequency selective surface," IEEE Trans. on Antennas and Propag., Vol. 57, No. 2, 460-466, 2009.
doi:10.1109/TAP.2008.2011202

23. Al-Joumayly, M. and N. Behdad, "A new technique for design of low-profile, second-order, band-pass frequency selective surfaces," IEEE Trans. on Antennas and Propag., Vol. 57, No. 2, 452-459, 2009.
doi:10.1109/TAP.2008.2011382

24. Al-Joumayly, M/ and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non resonant constituting elements," IEEE Trans. on Antennas and Propag., Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474

25. Luo, G. Q., W. Hong, Z. C. Hao, B. Liu, W. D. Li et al. "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Trans. on Antennas and Propag., Vol. 53, No. 12, 4035-4043, Dec. 2005.
doi:10.1109/TAP.2005.860010

26. Luo, G. Q., W. Hong, Q. H. Lai, K. Wu, and L. L. Sun, "Design and experimental verification of compact frequency-selective surface with quasi-elliptic bandpass response," IEEE Trans. on Microw. Theory and Tech., Vol. 55, No. 12, 2481-2487, 2007.
doi:10.1109/TMTT.2007.910085

27. Luo, G. Q., W. Hong, H. J. Tang, J. X. Chen, and L. L. Sun, "Triband frequency selective with periodic cell perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 6, 2007.
doi:10.1109/LMWC.2007.897793

28. Parker, E. A. and A. N. A. EI Sheikh, "Convoluted array elements and reduced size unit cells for frequency selective," IEE Pro. --- Micro. Antennas Propag., Vol. 138, No. 1, 19-22, 1991.
doi:10.1049/ip-h-2.1991.0004

29. Parker, E. A., A. N. A. EI Sheikh, and A. C. de C. Lima, "Convoluted frequency-selective array elements derived from linear and crossed dipoles," IEE Pro. --- Micro. Antennas Propag., Vol. 140, No. 5, 378-380, 1993.
doi:10.1049/ip-h-2.1993.0060

30. Sanz-lzquierdo, B., E. A. Parker, J.-B. Roberson, and J. C. Batchelor, "Singly and dual polarized convoluted frequency selective structures," IEEE Trans. on Antennas and Propag., Vol. 58, No. 3, 690-696, 2010.
doi:10.1109/TAP.2009.2039321