Vol. 38
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-07
A Low Power Low Phase Noise LC Voltage-Controlled Oscillator
By
Progress In Electromagnetics Research Letters, Vol. 38, 65-73, 2013
Abstract
A low phase noise CMOS complementary cross-coupled LC-tank voltage-controlled oscillator (VCO), implemented with TSMC 0.18 μm 1P6M CMOS technology, is presented. Double pair pseudo-resistance transistors biased by the tapped center of the inductor are utilized to reduce the DC bias current. The circuit consumes 1.55 mA from a 1.5 V supply voltage which saves up to 52.4% power, compared with the conventional one. Furthermore, an adaptive body biasing technique (ABB) is used to overcome the effect of PVT variations. The VCO is tunable from 2.58 to 3.07 GHz and has a phase noise -122.7 dBc/Hz at 1 MHz offset from the 3 GHz carrier. The Figure of Merit (FOM) of the proposed VCO is -188.8 dBc, and the figure of merit including the tuning range (FOMT ) is -193.5 dBc.
Citation
Hai Feng Zhou, Kam-Man Shum, Ray C. C. Cheung, Quan Xue, and Chi Hou Chan, "A Low Power Low Phase Noise LC Voltage-Controlled Oscillator," Progress In Electromagnetics Research Letters, Vol. 38, 65-73, 2013.
doi:10.2528/PIERL13011015
References

1. Hajimiri, A. and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE Journal of Solid-State Circuits, Vol. 34, 717-724, 1999.
doi:10.1109/4.760384

2. Ren, W., "Compact dual-band slot antenna for 2.4/5 GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406

3. Hegazi, E., J. Rael, and A. Abidi, The Designer's Guide to High-Purity Oscillators, Kluwer Academic Publishers, New York, 2005.

4. Wei, M. D., S. F. Chang, and Y. J. Yang, "A CMOS back gate-coupled QVCO based on back-to-back series varactor configuration for minimal AM-to-PM noise conversion," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 320-322, 2009.
doi:10.1109/LMWC.2009.2017605

5. Mohammad, N. G., A. Saberkari, and R. Meshkin, "A low power low phase noise CMOS voltage-controlled oscillator," 17th IEEE International Conference on Electronics, Circuits, and Systems, 422-425, Athens, Greece, 2010.

6. Park, D. and S. Cho, "An adaptive body-biased VCO with voltage-boosted switched tuning in 0.5V supply," Proceedings of the 32nd European Solid-State Circuits Conference, 444-447, Montreux, Switzerland, 2006.

7. Wang, T. P., "A K-band low-power colpitts VCO with voltage-to-current positive-feedback network in 0.18 μm CMOS," IEEE Microwave Theory and Wireless Component Letters, Vol. 21, No. 4, 218-220, 2011.
doi:10.1109/LMWC.2011.2108275

8. Wu, C. H., W. C. Fang, and N. Y. Wu, "Design of low power VCO using Gm-boosted technique for WLAN applications," IEEE International Conference on Consumer Electronics, 218-220, 2011.

9. Hsu, M. T. and W. H. Lin, "A low power 10 GHz voltage-controlled oscillator with modified current-reused configuration," Asia-Pacific Microwave Conference, 578-581, 2010.

10. Wu, C. H. and G. X. Jian, "A CMOS LC VCO with novel negative impedance design for wide-band operation," IEEE Radio Frequency Integrated Circuits Symposium, 537-540, 2010.

11. Xu, W., X. Shi, G. Wang, et al. "A CMOS LC-VCO with enhanced PSR based on common-mode replica compensation," International Conference on Computer Application and System Modeling, 174-177, 2010.

12. Li, J. Y., W. J. Lin, M. P. Houng, et al. "A second harmonic suppression CMOS crosscoupled VCO using active inductor technique for WLAN system applications," Journal of Electromagnetic Wave and Applications, Vol. 24, No. 14-15, 2077-2086, 2010.