Vol. 38
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-01
Direct Comparison Transfer of Microwave Power Sensor Calibration with an Adaptor: Modeling and Evaluation
By
Progress In Electromagnetics Research Letters, Vol. 38, 25-34, 2013
Abstract
In this paper, calibration of a microwave power sensor with an adaptor is investigated with direct comparison transfer technique, and mathematically modeled using signal flow-graphs together with non-touching loop rules. The developed calibration model is then implemented practically with a 30 dB attenuator as the adaptor. Its performance is evaluated following the Guide to the Expression of Uncertainty in Measurement and also verified with the Monte Carlo method. Good agreements are observed with all the error |En| ≤ 0.25 over the whole frequency range (up to 18 GHz).
Citation
Qian Zhang, Yu Song Meng, Yueyan Shan, and Zhiping Lin, "Direct Comparison Transfer of Microwave Power Sensor Calibration with an Adaptor: Modeling and Evaluation," Progress In Electromagnetics Research Letters, Vol. 38, 25-34, 2013.
doi:10.2528/PIERL13012203
References

1. Weidman, M. P., "Direct comparison transfer of microwave power sensor calibration," NIST Technical Note 1379, 1996.

2. Ginley, R., "A direct comparison system for measuring radio frequency power (100 kHz to 18 GHz)," Measure, Vol. 1, No. 4, 46-49, 2006.

3. Kang, T. W., J. H. Kim, J. Y. Kwon, et al. "Direct comparison technique using a transfer power standard with an adapter and its uncertainty," 2012 Conference on Precision Electromagnetic Measurements, 728-729, Washington DC, USA, 2012.

4. Shan, Y., Y. S. Meng, and Z. Lin, "Generic model and case studies of microwave power sensor calibration using direct comparison transfer," IEEE Transactions on Instrumentation and Measurement, Vol. 62, 2013, DOI:10.1109/TIM.2012.2225961.

5. Engen, G. F., "Amplitude stabilization of a microwave signal source," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 202-206, 1958.
doi:10.1109/TMTT.1958.1124538

6. Meng, Y. S., Y. Shan, and H. Neo, "Development of a waveguide microwave power sensor calibration system at NMC," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility, 745-748, Singapore, 2012.

7. Yhland, K., J. Stenarson, and C. Wingqvist, "Power sensor lin-earity calibration with an unknown attenuator," 2010 Conference on Precision Electromagnetic Measurements, 769-770, Daejeon, Korea, 2010.

8. BIPM, IEC, IFCC, ILAC, ISO, et al. "Evaluation of measurement data --- Guide to the expression of uncertainty in measurement,", JCGM 100 : 2008 (GUM 1995 with minor corrections), Joint Committee for Guides in Metrology, 2008.

9. Pozar, D. M., Microwave Engineering, Addison-Wesley, 1993.

10. Fantom, A., Radio Frequency and Microwave Power Measurement, Peter Peregrinus Ltd., UK, 1990.
doi:10.1049/PBEL007E

11. BIPM, IEC, IFCC, ILAC, ISO, et al. "Evaluation of measurement data --- Supplement 1 to the 'Guide to the expression of uncertainty in measurement' --- Propagation of distributions using a Monte Carlo method," JCGM 101 : 2008, Joint Committee for Guides in Metrology, 2008.

12. Meng, Y. S., Y. Shan, and H. Neo, "Evaluation of complex measurement uncertainty in polar coordinate for equivalent source reflection coefficient," 2012 Conference on Precision Electromagnetic Measurements, 116-117, Washington DC, USA, 2012.

13. Meng, Y. S. and Y. Shan, "Measurement uncertainty of complex-valued microwave quantities," Progress In Electromagnetics Research, Vol. 136, 421-433, 2013.

14. APLAC PT001 "Calibration interlaboratory comparisons,", Asia Pacific Laboratory Accreditation Cooperation-Pro¯ciency Testing Committee, 2008.