Vol. 38

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-03-06

Novel Planar Antenna with a Broadside Radiation

By Giuseppina Monti, Fabrizio Congedo, and Luciano Tarricone
Progress In Electromagnetics Research Letters, Vol. 38, 45-53, 2013
doi:10.2528/PIERL13020606

Abstract

This paper presents a novel low-profile antenna with a broadside radiation. The proposed design strategy consists in modifying the layout of a classical Vivaldi antenna, thus resulting in compact dimensions and a broadside radiation pattern. Two different ways of implementing the proposed design approach are presented and discussed. More specifically, experimental data referring to two prototypes on a FR4 substrate with an operating frequency of 2.45 GHz are reported. The first layout has approximately the same dimensions of a Vivaldi antenna and a directivity of about 7 dBi, the second one has more compact dimensions (the dimensions are smaller than the ones of a standard patch antenna) and a directivity of about 5 dBi.

Citation


Giuseppina Monti, Fabrizio Congedo, and Luciano Tarricone, "Novel Planar Antenna with a Broadside Radiation," Progress In Electromagnetics Research Letters, Vol. 38, 45-53, 2013.
doi:10.2528/PIERL13020606
http://www.jpier.org/PIERL/pier.php?paper=13020606

References


    1. Gibson, P. J., "The Vivaldi aerial," Proc. 9th Eur. Microw. Conf., 101-105, Brighton, UK, Jun. 1979.

    2. Janaswamy, R. and D. Schaubert, "Analysis of the tapered slot antenna IEEE Trans. on Antennas and Propag.,", Vol. 35, No. 9, 1058-1065, 1987.

    3. Oraizi, H. and S. Jam, "Optimum design of tapered slot antenna profile," IEEE Trans. on Antennas and Propag., Vol. 51, No. 8, 1987-1995, 2003.
    doi:10.1109/TAP.2003.811090

    4. Zucker, F. J., Antenna Engineering Handbook, McGraw Hill, 1961.

    5. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
    doi:10.2528/PIER08040601

    6. Ruvio, G., "UWB breast cancer detection with numerical phantom and Vivaldi antenna," Proc. of the 2011 IEEE nternational Conference on Ultra-wideband (ICUWB), 8-11, Bologna, Italy, Sep. 2011.

    7. Vu, T. A., et al., "UWB Vivaldi antenna for impulse radio beamforming," Proc. of the 2009 NORCHIP, 1-5, Nov. 2009.

    8. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
    doi:10.2528/PIER07072904

    9. Schuppert, B., "Microstrip/slotline transitions: Modeling and experimental investigations," IEEE Trans. on Antennas and Propag., Vol. 36, No. 8, 1272-1282, 1988.

    10. Zinieris, M. M., R. Sloan, and L. E. Davis, "A broadband microstrip-to-slotline transition," Microwave and Optical Technology Letters, Vol. 18, No. 5, 339-342, 1998.
    doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9

    11. Zhou, B. , H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

    12. Ellis, T. J. and G. M. Rebeiz, "MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 2, 1157-1160, 1996.

    13. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proc. H: Microw., Antenn. and Prop., Vol. 135, No. 2, 89-92, 1988.
    doi:10.1049/ip-h-2.1988.0020

    14. Langley, J. D. S., P. S. Hall, and P. Newham, "Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays," IEE Proc. Microw. Antennas Propag., Vol. 143, No. 2, 97-102, 1996.
    doi:10.1049/ip-map:19960260

    15. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antenn. Wirel. Prop. Lett., Vol. 7, 656-660, 2008.
    doi:10.1109/LAWP.2008.921352

    16. Jolani, F., G. R. Dadashzadeh, M. Naser-Moghadasi, and A. M. Dadgarpour, "Design and optimization of compact balanced antipodal Vivaldi antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009.
    doi:10.2528/PIERC09071510

    17. Bourqui, J., M. Okoniewski, and E. C. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. on Antennas and Propag., Vol. 58, No. 7, 2318-2326, 2010.
    doi:10.1109/TAP.2010.2048844

    18. Alhawari, A. R. H., et al., "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012.
    doi:10.2528/PIERC12012906

    19., , Computer Simulation Technology, www.cst.com/.

    20. Shin, J. and D. H. Schaubert, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. on Antennas and Propag., Vol. 47, No. 5, 879-886, 1999.
    doi:10.1109/8.774151

    21. Monti, G., R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
    doi:10.2528/PIER09071109

    22. Monti, , G., , R. de Paolis, and L. Tarricone, "A three-band T-junction power divider based on arti¯cial transmission lines," Progress In Electromagnetics Research C, Vol. 34, 41-52, 2013.