Vol. 40

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-05-05

Compact Coplanar Waveguide (CPW)-Fed Tunable Wideband Resonant Antennas Using Metamaterial Transmission Line

By Long Zheng, Guangming Wang, and Lin Geng
Progress In Electromagnetics Research Letters, Vol. 40, 19-28, 2013
doi:10.2528/PIERL13032512

Abstract

A wideband resonant antenna loaded with coplanar waveguide (CPW) epsilon negative transmission metamaterial line (ENG MTL) unit cells is proposed. The CPW geometry provides high design freedom, and the metamaterial resonant antenna is designed on a CPW single layer where vias are not required. The novel ENG unit cell on a vialess single layer simplifies the fabrication process. The dispersion analysis of the metamaterial unit cell reveals that increasing right hand capacitance and left hand inductance can decrease the half-wavelength resonance frequency, thus reducing the electrical size of the proposed antenna. Based on the proposed ENG MTL unit cell the wideband antenna is verified by a commercial EM simulator HFSS11 and developed. Comparing the measured performances with those resonant antennas, it is noticed that the proposed antenna achieves high bandwidth and further size reduction, higher efficiency and easier manufacturing. The realized antenna has a compact size of 0.32λ0 × 0.20λ0 × 0.012λ0 (26.6 mm × 16.8 mm × 1 mm) at 3.65 GHz, and operates over the frequency ranges 3.38-4.23 GHz suitable for WiMAX applications. Good agreement between the simulated and measured results is obtained.

Citation


Long Zheng, Guangming Wang, and Lin Geng, "Compact Coplanar Waveguide (CPW)-Fed Tunable Wideband Resonant Antennas Using Metamaterial Transmission Line," Progress In Electromagnetics Research Letters, Vol. 40, 19-28, 2013.
doi:10.2528/PIERL13032512
http://www.jpier.org/PIERL/pier.php?paper=13032512

References


    1. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications," Wiley, Dec. 2005.

    2. Lee, C.-J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration," IEEE Trans. Antennas Propag., Vol. 54, No. 8, 2283-2291, 2006.
    doi:10.1109/TAP.2006.879199

    3. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopole radiation pattern based on periodic structures," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 868-876, Mar. 2007.
    doi:10.1109/TAP.2007.891845

    4. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3710-3712, Dec. 2007.
    doi:10.1109/TAP.2007.910505

    5. Ryu, Y.-H., J.-H. Park, J.-H. Lee, and H.-S. Tae, "Multiband antenna using +1, -1, and 0 resonant mode of DGS dual composite right/left handed transmission line," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2485-2488, Oct. 2009.
    doi:10.1002/mop.24649

    6. Jang, T., A. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended band-width and high efficiency on vialess single layer," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 363-372, Feb. 2011.
    doi:10.1109/TAP.2010.2096191

    7. Lai, C.-P., S.-C. Chiu, H.-J. Li, and S.-Y. Chen, "Zeroth-order resonator antennas using inductor-loaded and capacitor-loaded CPWs," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3448-3453, Sep. 2011.
    doi:10.1109/TAP.2011.2161561

    8. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
    doi:10.1109/TAP.2011.2163754

    9. Leftheriades, G. V. E., A. K. Iyer, and P. C. K. Remer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 12, 2702-2712, 2002.
    doi:10.1109/TMTT.2002.805197

    10. Lim, S., C. Caloz, and T. Itoh, "Metmaterial-based electronically controlled transmission line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, 161-173, Jan. 2005.
    doi:10.1109/TMTT.2005.856086

    11. Palandoken, M., A. Grede, and H. Henke, "Broadband microtrip antenna with left handed metamaterial," IEEE Trans. Antennas Propag., Vol. 57, No. 2, 331-338, Feb. 2009.
    doi:10.1109/TAP.2008.2011230

    12. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, Apr. 2010.
    doi:10.1109/TAP.2010.2041317

    13. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybird mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 1143-1147, Feb. 2012.
    doi:10.1109/TAP.2011.2173114

    14. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
    doi:10.1109/TAP.2011.2163754