Vol. 43
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-10-09
Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach
By
Progress In Electromagnetics Research Letters, Vol. 43, 83-94, 2013
Abstract
A novel structure is proposed as an inline resonator. The resonator has low loss, compact size and good sensing characteristics. A simple analytical form to the plasmonic waveguide discontinuity, filter resonance response and cascaded filters behavior is proposed. The model is extracted from the waveguide physical parameters and provides a physical insight into the structure of the filter. This model is simple, accurate, and shows a good agreement with FDTD simulations. The ability of the model to provide a good methodology to obtain high quality filters using cascaded inline filtering is verified using FDTD. The proposed nanofilter can be used in various plasmonic applications such as sensing, biomedical diagnostics and on-chip interconnects. Using cascaded filters, a higher quality filter is achieved.
Citation
Rehab Kotb Yehia Ismail Mohamed A. Swillam , "Integrated Metal-Insulator-Metal Plasmonic Nano Resonator: an Analytical Approach," Progress In Electromagnetics Research Letters, Vol. 43, 83-94, 2013.
doi:10.2528/PIERL13071507
http://www.jpier.org/PIERL/pier.php?paper=13071507
References

1. Berini, P., "Bulk and surface sensitivities of surface plasmon waveguides," New J. Phys., Vol. 10, 105010, 2008.
doi:10.1088/1367-2630/10/10/105010

2. Homola, J., "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem., Vol. 377, 528-539, 2003.
doi:10.1007/s00216-003-2101-0

3. Maier, S. A., "Plasmonic field enhancement and SERS in the effective mode volume picture," Opt. Express, Vol. 14, 1957-1964, 2006.
doi:10.1364/OE.14.001957

4. Dionne, J. A., L. A. Sweatlock, and H. A. Atwater, "Plasmonic slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, Vol. 73, 035407, 2006.
doi:10.1103/PhysRevB.73.035407

5. Lau, B., M. A. Swillam, and A. S. Helmy, "Hybrid orthogonal junctions: Wideband plasmonic slot-silicon waveguide couplers," Opt. Express, Vol. 18, No. 26, 27048-27059, 2010.
doi:10.1364/OE.18.027048

6. Lin, C., H. K. Wang, B. Lau, M. A. Swillam, and A. S. Helmy, "Efficient broadband energy transfer via momentum matching at hybrid guided-wave junctions," Applied Physics Letters, Vol. 101, 123115, 2012.
doi:10.1063/1.4753985

7. Lin, C., M. A. Swillam, and A. S. Helmy, "Analytical model for metal-insulator-metal mesh waveguide architectures," J. Opt. Soc. Am. B, Vol. 29, No. 11, 3157-3169, 2012.
doi:10.1364/JOSAB.29.003157

8. Swillam, M. A. and A. S. Helmy, "Feedback effects in plasmonic slot waveguides examined using a closed-form model," Photon.Technol. Lett., Vol. 24, 497-499, 2012.
doi:10.1109/LPT.2011.2181350

9. Yun, B., G. Hu, and Y. Cui, "Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide," J. Phys. D, Appl. Phys., Vol. 43, No. 38, 385102-1-385102-8, 2010.
doi:10.1088/0022-3727/43/38/385102

10. Han, Z., V. Van, W. N. Herman, and P.-T. Ho, "Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes," Opt. Express, Vol. 17, No. 15, 12678-12684, 2009.
doi:10.1364/OE.17.012678

11. Lin, X.-S. and X.-G. Huang, "Tooth-shaped plasmonic waveguide filters with nanometeric sizes," Opt. Lett., Vol. 33, 2874-2876, 2008.
doi:10.1364/OL.33.002874

12. Huang, Y., C. Min, L. Yang, and G. Veronis, "Nanoscale plasmonic devices based on metal-dielectric-metal stub resonators," International Journal of Optics, Vol. 2012, Article ID 372048, 13, 2012.

13. Veronis, G. and S. Fan, "Bends and splitters in metal-dielectricmetal subwavelength plasmonic waveguides," Appl. Phys. Lett., Vol. 87, 131102, 2005.
doi:10.1063/1.2056594

14. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

15. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, Toronto, 1998.

16. Lumerical, "Multicoefficient material modelling in FDTD,", http://www.lumerical.com/solutions/whitepapers/fdtd multicoefficient material modeling.html.

17. Johnson, P. B. and R. W. Christy, "Optical constants of nobel metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

18. Veronis, G., S. E. Kocabas, D. A. B. Miller, and S. Fan, "Modeling of plasmonic waveguide components and networks," J. Comput. Theor. Nanosci., Vol. 6, 1808-1826, 2009.
doi:10.1166/jctn.2009.1244

19. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sensors and Actuators B: Chemical, Vol. 54, No. 1-2, 3-15, Jan. 25, 1999, ISSN 0925-4005, 10.1016/S0925-4005(98)00321-9.
doi:10.1016/S0925-4005(98)00321-9

20. Choi, I. and Y. Choi, "Plasmonic Nanosensors: Review and Prospect," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 3, 1110-1121, May-Jun. 2012.
doi:10.1109/JSTQE.2011.2163386