Vol. 44
Latest Volume
All Volumes
PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-11-19
Broadband and Small-Size 3-dB Ring Coupler
By
Progress In Electromagnetics Research Letters, Vol. 44, 23-28, 2014
Abstract
A topology for a 3-dB broadband and small-size ring coupler is proposed. It consists of fullydistributed Composite Right-/Left-Handed phase shifters and a Lange coupler. For the fabricated coupler, the frequency bandwidth is one octave, centered on 1.5 GHz, while the footprint area is 25% compared to the conventional ring coupler topology. The experimental results are in good agreement with the expected ones, obtained by electromagnetic simulation.
Citation
Stefan Simion Giancarlo Bartolucci , "Broadband and Small-Size 3-dB Ring Coupler," Progress In Electromagnetics Research Letters, Vol. 44, 23-28, 2014.
doi:10.2528/PIERL13101001
http://www.jpier.org/PIERL/pier.php?paper=13101001
References

1. Pon, C. Y., "Hybrid-ring directional coupler for arbitrary power divisions," IRE Trans. Microwave Theory and Techniques, Vol. 9, No. 6, 529-535, 1961.
doi:10.1109/TMTT.1961.1125385

2. Huo, J.-T. and C.-H. Tsai, "Generalized synthesis of rat race ring coupler and its application to circuit miniaturization," Progress In Electromagnetics Research, Vol. 108, 51-64, 2010.

3. Kim, D. I. and G. S. Yang, "Design of new hybrid-ring directional coupler using \l\8 or \l\6 sections," IEEE Trans. on Microwave Theory and Techniques, Vol. 39, No. 10, 1179-1784, 1991.

4. Coupez, J. P., A. Peden, and C. Person, "Analysis and design of ultra miniature hybrid ring directional coupler," Proc. 22nd European Microwave Conf., Vol. 1, 443-447, 1992.

5. Chuang, M. L., "Miniaturized ring coupler of arbitrary reduced size," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 16-18, 2005.
doi:10.1109/LMWC.2004.840960

6. Simion, S., "Small-size ring coupler design method based on fully distributed composite right/left handed approach," Electronics Letters, Vol. 48, No. 23, 1481-1483, 2012.
doi:10.1049/el.2012.2620

7. Kim, D. I. and Y. Naito, "Broad-band design of improved hybrid-ring 3-dB directional couplers," IEEE Trans. on Microwave Theory and Techniques, Vol. 30, No. 11, 2040-2046, 1982.
doi:10.1109/TMTT.1982.1131373

8. Ho, C. H., L. Fan, and K. Chang, "Broadband uniplanar hybrid ring coupler," Electronics Letters, Vol. 29, No. 1, 44-45, 1993.
doi:10.1049/el:19930029

9. Murgulescu, M. H., M. Moisan, P. Legaud, E. Penard, and I. Zaquine, "New wideband, 0:67\l gcircumference 180 hybrid ring coupler ," Electronics Letters, Vol. 30, No. 4, 299-300, 1994.
doi:10.1049/el:19940234

10. Wang, T. and K. Wu, "Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC's," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 2, 198-206, 1999.
doi:10.1109/22.744295

11. March, S., "A wideband stripline hybrid ring," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, No. 6, 361, 1968.
doi:10.1109/TMTT.1968.1126693

12. Ahn, H. R. and B. Kim, "Small wideband coupled-line ring hybrids with no restriction on coupling power," IEEE Trans. on Microwave Theory and Techniques, Vol. 57, No. 7, 1806-1817, 2009.
doi:10.1109/TMTT.2009.2022815

13. Simion, S., "Design method of miniaturized ring coupler using phase shifters consisting of fully-distributed composite right/left-handed structures," Progress In Electromagnetics Research B, Vol. 50, 61-76, 2013.

14. Chi, P. L., "Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 4, 170-172, 2012.
doi:10.1109/LMWC.2012.2189376

15. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 3, 798-804, 2004.
doi:10.1109/TMTT.2004.823541