Vol. 44
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-11-19
Broadband and Small-Size 3-dB Ring Coupler
By
Progress In Electromagnetics Research Letters, Vol. 44, 23-28, 2014
Abstract
A topology for a 3-dB broadband and small-size ring coupler is proposed. It consists of fullydistributed Composite Right-/Left-Handed phase shifters and a Lange coupler. For the fabricated coupler, the frequency bandwidth is one octave, centered on 1.5 GHz, while the footprint area is 25% compared to the conventional ring coupler topology. The experimental results are in good agreement with the expected ones, obtained by electromagnetic simulation.
Citation
Stefan Simion, and Giancarlo Bartolucci, "Broadband and Small-Size 3-dB Ring Coupler," Progress In Electromagnetics Research Letters, Vol. 44, 23-28, 2014.
doi:10.2528/PIERL13101001
References

1. Pon, C. Y., "Hybrid-ring directional coupler for arbitrary power divisions," IRE Trans. Microwave Theory and Techniques, Vol. 9, No. 6, 529-535, Nov. 1961.
doi:10.1109/TMTT.1961.1125385

2. Huo, J.-T. and C.-H. Tsai, "Generalized synthesis of rat race ring coupler and its application to circuit miniaturization," Progress In Electromagnetics Research, Vol. 108, 51-64, 2010.

3. Kim, D. I. and G. S. Yang, "Design of new hybrid-ring directional coupler using l8 or l6 sections," IEEE Trans. on Microwave Theory and Techniques, Vol. 39, No. 10, 1179-1784, Oct. 1991.

4. Coupez, J. P., A. Peden, and C. Person, "Analysis and design of ultra miniature hybrid ring directional coupler," Proc. 22nd European Microwave Conf., Vol. 1, 443-447, 1992.

5. Chuang, M. L., "Miniaturized ring coupler of arbitrary reduced size," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 16-18, Jan. 2005.
doi:10.1109/LMWC.2004.840960

6. Simion, S., "Small-size ring coupler design method based on fully distributed composite right/left handed approach," Electronics Letters, Vol. 48, No. 23, 1481-1483, Nov. 2012.
doi:10.1049/el.2012.2620

7. Kim, D. I. and Y. Naito, "Broad-band design of improved hybrid-ring 3-dB directional couplers," IEEE Trans. on Microwave Theory and Techniques, Vol. 30, No. 11, 2040-2046, Nov. 1982.
doi:10.1109/TMTT.1982.1131373

8. Ho, C. H., L. Fan, and K. Chang, "Broadband uniplanar hybrid ring coupler," Electronics Letters, Vol. 29, No. 1, 44-45, Jan. 1993.
doi:10.1049/el:19930029

9. Murgulescu, M. H., M. Moisan, P. Legaud, E. Penard, and I. Zaquine, "New wideband, 0:67l gcircumference 180 hybrid ring coupler ," Electronics Letters, Vol. 30, No. 4, 299-300, Feb. 1994.
doi:10.1049/el:19940234

10. Wang, T. and K. Wu, "Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC's," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 2, 198-206, Feb. 1999.
doi:10.1109/22.744295

11. March, S., "A wideband stripline hybrid ring," IEEE Trans. on Microwave Theory and Techniques, Vol. 61, No. 6, 361, Jun. 1968.
doi:10.1109/TMTT.1968.1126693

12. Ahn, H. R. and B. Kim, "Small wideband coupled-line ring hybrids with no restriction on coupling power," IEEE Trans. on Microwave Theory and Techniques, Vol. 57, No. 7, 1806-1817, Jul. 2009.
doi:10.1109/TMTT.2009.2022815

13. Simion, S., "Design method of miniaturized ring coupler using phase shifters consisting of fully-distributed composite right/left-handed structures," Progress In Electromagnetics Research B, Vol. 50, 61-76, 2013.

14. Chi, P. L., "Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 4, 170-172, Apr. 2012.
doi:10.1109/LMWC.2012.2189376

15. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, No. 3, 798-804, Mar. 2004.
doi:10.1109/TMTT.2004.823541