Vol. 44
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-01-18
Voltage Control of Electromagnetically-Induced-Transparency-Like Effect in Metamaterials Based on Microstrip System
By
Progress In Electromagnetics Research Letters, Vol. 44, 113-118, 2014
Abstract
The tuning of electromagnetically-induced-transparency-like (EIT-like) phenomenon in metamaterials based on microstrip system is investigated. The tunability of EIT-like effect mainly arises from the controllable elements of varactor diodes loading on the ``dark'' resonators of EIT-like metamaterials. The results show that the frequency range of transparency window of our EIT-like metamaterials can be continuously and reversibly adjusted along with the varying external voltages applied on the varactor diodes. Moreover, the transmittance maximum hardly changes with the shift of transparency window. Such tunable EIT-like metamaterials may be applied in tunable slow-wave filters and switch devices.
Citation
Tuanhui Feng, Limin Wang, Yunhui Li, Yong Sun, and Hai Lu, "Voltage Control of Electromagnetically-Induced-Transparency-Like Effect in Metamaterials Based on Microstrip System," Progress In Electromagnetics Research Letters, Vol. 44, 113-118, 2014.
doi:10.2528/PIERL13120704
References

1. Harrism, S. E., "Electromagnetically induced transparency," Phys. Today, Vol. 50, 36-42, 1997.
doi:10.1063/1.881806

2. Fleischhauer, M., A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys., Vol. 77, 633-673, 2005.
doi:10.1103/RevModPhys.77.633

3. Hau, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Vol. 397, 594-598, 1999.
doi:10.1038/17561

4. Phillips, D. F., A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, "Storage of light in atomic vapor," Phys. Rev. Lett., Vol. 86, 783-786, 2001.
doi:10.1103/PhysRevLett.86.783

5. Xu, Q., S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, "Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency," Phys. Rev. Lett., Vol. 96, 123901, 2006.
doi:10.1103/PhysRevLett.96.123901

6. Totsuka, K., N. Kobayashi, and M. Tomita, "Slow light in coupled-resonator-induced transparency," Phys. Rev. Lett., Vol. 98, 213904, 2007.
doi:10.1103/PhysRevLett.98.213904

7. Kekatpure, R. D., E. S. Barnard, W. Cai, and M. L. Brongersma, "Phase-coupled plasmon-induced transparency," Phys. Rev. Lett., Vol. 104, 243902, 2010.
doi:10.1103/PhysRevLett.104.243902

8. Zhang, J., W. Bai, L. Cai, Y. Xu, G. Song, and Q. Gan, "Observation of ultra-narrow band plasmon induced transparency based on large-area hybrid plasmon-waveguide systems," Appl. Phys. Lett., Vol. 99, 181120, 2011.
doi:10.1063/1.3659309

9. Yang, X., M. Yu, D. L. Kwong, and C. W.Wong, "All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett., Vol. 102, 173902, 2009.
doi:10.1103/PhysRevLett.102.173902

10. Gu, T., S. Kocaman, X. Yang, J. F. McMillan, M. B. Yu, G. Q. Lo, D. L. Kwong, and C. W. Wong, "Deterministic integrated tuning of multicavity resonances and phase for slow-light in coupled photonic crystal cavities," Appl. Phys. Lett., Vol. 98, 121103, 2011.
doi:10.1063/1.3571283

11. Zheludev, N. I. and Y. S. Kivshar, "From metamaterials to metadevices," Nature Mater., Vol. 11, 917-924, 2012.
doi:10.1038/nmat3431

12. Lazarides, N. and G. P. Tsironis, "Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials," Phys. Rev. Lett., Vol. 110, 053901, 2013.
doi:10.1103/PhysRevLett.110.053901

13. Fan, Y. C., L. Li, S. X. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

14. Zhang, S., D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett., Vol. 101, 047401, 2008.
doi:10.1103/PhysRevLett.101.047401

15. Liu, N., L. Langguth, T. Weiss, J. KÄastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Mater., Vol. 8, 758-762, 2009.
doi:10.1038/nmat2495

16. Liu, N., T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, "Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing," Nano Lett., Vol. 10, 1103-1107, 2010.
doi:10.1021/nl902621d

17. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett., Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903

18. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency," Appl. Phys. Lett., Vol. 94, 211902, 2009.
doi:10.1063/1.3138868

19. Singh, R., C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B, Vol. 79, 085111, 2009.
doi:10.1103/PhysRevB.79.085111

20. Chiam, S. Y., R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B, Vol. 80, 153103, 2009.
doi:10.1103/PhysRevB.80.153103

21. Zhang, L., P. Tassin, T. Koschny, C. Kurter, S. M. Anlage, and C. M. Soukoulis, "Large group delay in a microwave metamaterial analog of electromagnetically induced transparency," Appl. Phys. Lett., Vol. 97, 241904, 2010.
doi:10.1063/1.3525925

22. Sun, Y., H. T. Jiang, Y. P. Yang, Y. W. Zhang, H. Chen, and S. Y. Zhu, "Electromagnetically induced transparency in metamaterials: Influence of intrinsic loss and dynamic evolution," Phys. Rev. B, Vol. 83, 195140, 2011.
doi:10.1103/PhysRevB.83.195140

23. Yin, X. G., T. H. Feng, S. Yip, Z. X. Liang, A. Hui, J. C. Ho, and J. Li, "Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic structural molecules," Appl. Phys. Lett., Vol. 103, 021115, 2013.
doi:10.1063/1.4813553

24. Liu, X. J., J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, "Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode," Appl. Phys. Lett., Vol. 100, 131101, 2012.
doi:10.1063/1.3696306

25. Shao, J., J. Q. Li, J. Li, Y. K. Wang, Z. G. Dong, P. Chen, R. X. Wu, and Y. Zhai, "Analogue of electromagnetically induced transparency by doubly degenerate modes in a U-shaped metamaterial," Appl. Phys. Lett., Vol. 102, 034106, 2013.
doi:10.1063/1.4789432

26. Wu, J. B., B. B. Jin, J. Wan, L. J. Liang, Y. G. Zhang, T. Jia, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, "Superconducting terahertz metamaterials mimicking electromagnetically induced transparency," Appl. Phys. Lett., Vol. 99, 161113, 2011.
doi:10.1063/1.3653242

27. Kurter, C., P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, "Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial," Phys. Rev. Lett., Vol. 107, 043901, 2011.
doi:10.1103/PhysRevLett.107.043901

28. Tamayama, Y., T. Nakanishi, and M. Kitano, "Variable group delay in a metamaterial with field-gradient-induced transparency," Phys. Rev. B, Vol. 85, 073102, 2012.
doi:10.1103/PhysRevB.85.073102

29. Lu, , X., J. H. Shi, R. Liu, and C. Y. Guan, "Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials," Opt. Express, Vol. 20, 17581-17590, 2012.
doi:10.1364/OE.20.017581

30. Aydin, K., I. Bulu1, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for di®erent split-ring resonator parameters and designs," New J. Phys., Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168