Vol. 46
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-05-17
Low Cost Strip-to-Bilateral-Slotline Transition on Wide Slotline
By
Progress In Electromagnetics Research Letters, Vol. 46, 67-72, 2014
Abstract
This paper presents a low-cost strip-to-bilateral-slotline transition with operating bandwidth from 0.53 to 6 GHz. The low-cost design concept is realized by utilizing conventional cheap FR-4 substrate and wide slotline with large slot width. By virtue of the low price of FR-4, less strict fabrication tolerance of wide slotline and the avoidance of metallic vias, the fabrication cost is reduced significantly compared to schemes using expensive Rogers RT laminates, extremely narrow slotline with strict fabrication tolerance and metallic vias. The broadband impedance matching difficulty caused by the high characteristic impedance of wide slotline is solved by three means. Firstly, bilateral structure is used to lower the characteristic impedance of the slotline. Then an elliptic slotline stub and an innovative half-elliptic strip stub are proposed to provide good impedance matching. Finally, multi-section stepped impedance transformers are used to match the transition from high impedance to standard 50 Ohm. The validity of the design methods is verified through experiments.
Citation
Pengbo Zhang, Xiaoqiang Chen, and Jun Ma, "Low Cost Strip-to-Bilateral-Slotline Transition on Wide Slotline," Progress In Electromagnetics Research Letters, Vol. 46, 67-72, 2014.
doi:10.2528/PIERL14041609
References

1. Lin, F., Y. Qi, and Y. C. Jiao, "A 0.7-20-GHz strip-fed bilateral tapered slot antenna with low cross polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 1, 737-740, June 2013.
doi:10.1109/LAWP.2013.2270934

2. Lin, F., Y. C. Jiao, and Y. Qi, "A wideband microstrip to bilateral slotline transition using constant impedance bilateral slotline and heart-shaped irregular cavity," IEEE Microwave and Components Letters, Vol. 23, No. 5, 255-257, April 2013.
doi:10.1109/LMWC.2013.2255123

3. Wang, N.-B., Y.-C. Jiao, Y. Song, L. Zhang, and F.-S. Zhang, "A microstrip-fed logarithmically tapered slot antenna for wideband applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1335-1344, 2009.
doi:10.1163/156939309789108543

4. Wang, N.-B., Y. Song, Y.-C. Jiao, L. Zhang, and F.-S. Zhang, "Extreme wideband tapered slot antenna with impedance bandwidth in excess of 21.6 : 1," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 231-238, 2009.
doi:10.1163/156939309787604445

5. Xu, H.-Y., H. Zhang, J. Wang, and L.-X. Ma, "A new tapered slot antenna with symmetrical and stable radiation pattern," Progress In Electromagnetics Research Letters, Vol. 5, 35-43, 2008.
doi:10.2528/PIERL08103003

6. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for UWB see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.
doi:10.2528/PIER08040601

7. Ramakrishna, J., "Even-mode characteristics of the bilateral slotline," IEEE Transaction on Microwave Theory and Techniques, Vol. 38, No. 6, 760-765, June 1990.
doi:10.1109/22.130971

8. Lin, F., Y. C. Jiao, and Z. Zhang, "Strip-fed tapered slot antenna with enhanced impedance bandwidth from 0.57-35 GHz," IET Electronics Letters, Vol. 49, No. 17, 1057-1058, August 2013.
doi:10.1049/el.2013.1920