Vol. 47
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-07-28
Analysis of Excitation Pulsed Signal Propagation for Atom Probe Tomography System
By
Progress In Electromagnetics Research Letters, Vol. 47, 61-70, 2014
Abstract
The purpose of this paper is on the behavioural modelling of surge voltage pulses used in Atom Probe Tomography. After brief description of the atom probe functioning principle, we examine the excitation electrical pulse signal integrity along the electric pulser (E-pulser) feeding line modelling with respect to the IEC1733/04 standard. This feeding electric line is ended by cylindrical via ground to control the ion emission. By using the transmission line (TL) ultra-broadband RLCG model, the propagating pulsed signals degradation is predicted. The signal propagation was analysed in both frequency and time domains by taking into account the substrate dispersion. The wideband frequency behaviours of the surge signal along the feeding line were examined from DC-to-2 GHz. In addition, by considering pulse surge signals with pulse-width and rise-/fall-time parameters (T1=9 ns, tr1=tf1=1.6 ns) and (T2=30 ns, tr2=4 ns/tf2=18 ns), the transient responses from 5 cm to -20 cm length TL are characterized. It was shown that the excitation pulse was significantly distorted. It was emphasized that the operated signal delay varies from 0.3 ns-to-1.5 ns in function of the via capacitor value. The time-dependent radiated E-field on the performance of the atom probe system which enables to characterize the nature of tested materials (ions or atoms) is discussed. The presented analysis approach is particularly useful for E-pulser integrated in measurement scientific instruments as Atom Probe Tomography time of flight optimisation, a nano-analysing technique that uses ultra-sharp high vacuum pulse to induce controlled erosion of samples. In this application, the excitation voltage pulse integrity during the propagation is required in order to improve the measurement instrument performances.
Citation
Blaise Ravelo, and Francois Vurpillot, "Analysis of Excitation Pulsed Signal Propagation for Atom Probe Tomography System," Progress In Electromagnetics Research Letters, Vol. 47, 61-70, 2014.
doi:10.2528/PIERL14042403
References

1. Deutsch, A., G. V. Kopcsay, P. Restle, G. Katopis, W. D. Becker, H. Smith, P. W. Coteus, C. W. Surovic, B. J. Rubin, R. P. Dunne, T. Gallo, K. A. Jenkins, L. M. Terman, R. H. Dennard, G. A. Sai-Halasz, and D. R. Knebel, "When are transmission-line effects important for on-chip interconnections?," IEEE Trans. Microwave Theory and Techniques, Vol. 45, 1836-1846, Oct. 1997.
doi:10.1109/22.641781

2. Eudes, T., B. Ravelo, T. Lacrevaz, and B. Flechet, "Distributed model of two-level asymmetrical PCB interconnect tree," Proc. of 2013 International Symposium on Electromagnetic Compatibility (EMC Europe), 132-137, Brugge, Belgium, Sep. 2-6, 2013.

3. Ravelo, B., "Delay modelling of high-speed distributed interconnect for the signal integrity prediction," Eur. Phys. J. Appl. Phys., Vol. 57, 31002-1-31002-8, Feb. 2012.

4. Buckwalter, J. F., "Predicting microwave digital signal integrity," IEEE Trans. Advanced Packaging, Vol. 32, No. 2, 280-289, May 2009.
doi:10.1109/TADVP.2008.2011560

5. Zhang, G.-H., M. Xia, and X.-M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

6. Ravelo, B., "Behavioral model of symmetrical multi-level T-tree interconnects," Progress In Electromagnetics Research B, Vol. 41, 23-50, 2012.
doi:10.2528/PIERB12040205

7. Muller, E. W., J. A. Panitz, and S. B. McLane, "The atom probe field ion microscope," Review of Scientific Instruments, Vol. 39, No. 1, 83-88, 1968.
doi:10.1063/1.1683116

8. Blavette, D., A. Bostel, J. M. Sarrau, B. Deconihout, and A. Menand, "An atom-probe for three dimensional tomography," Nature, Vol. 363, 432-435, 1993.
doi:10.1038/363432a0

9. Gault, B., F. Vurpillot, A. Vella, M. Gilbert, A. Menand, D. Blavette, and B. Deconihout, "Design of a femtosecond laser assisted tomographic atom probe," Review of Scientific Instruments, Vol. 77, No. 4, 043705, 2006.
doi:10.1063/1.2194089

10. Kelly, T. F. and M. K. Miller, "Atom probe tomography," Review of Scientific Instruments, Vol. 78, No. 3, 031101, 2007.
doi:10.1063/1.2709758

11. Menand, A. and D. Blavette, "Sonde atomique tridimensionnelle,", P902, 1-7, Techniques de l'Ingenieur, Jul. 1995 (in French).

12. Vurpillot, F. and A. Bostel, "Tomographic atomic probe comprising a high voltage electric pulse electro-optical generator,", Patent No. 057721, 2010.

13. Gault, B., M. P. Moody, J. M. Cairney, and S. P. Ringer, "Atom probe microscopy," Springer Series in Materials Science, Vol. 160, 29-68, 2012.
doi:10.1007/978-1-4614-3436-8_3

14. Kelly, T. F., T. T. Gribb, J. D. Olson, R. L. Martens, J. D. Shepard, S. A. Wiener, T. C. Kunicki, R. M. Ulfg, D. R. Lenz, E. M. Strennen, E. Oltman, J. H. Bunton, and D. R. Strait, "First data from a commercial local electrode atom probe (LEAP)," Microscopy and Microanalysis, Vol. 10, 373-383, 2004.
doi:10.1017/S1431927604040565

15. Miller, M. K., "Atom probe tomography and field ion microscopy: Ion-beam techniques," Characterization of Materials, 2nd Edition, May 2012, Doi: 10.1002/0471266965.com145.

16. Tourek, C. J., "Application of atom probe tomography to the investigation of atomic force microscope tips and interfacial phenomena,", Ph.D. Thesis, Iowa State University, USA, 2012.

18., www.belke.com.

18. Kohler, S., V. Couderc, R. P. O'connor, D. Arnaud-Cormos, and P. Leveque, "A versatile high voltage nano- and sub-nanosecond pulse generator," IEEE Trans. Dielectrics and Electrical Insulation, Vol. 20, No. 4, 1201-1208, Aug. 2013.
doi:10.1109/TDEI.2013.6571435

19. Yuan, J., Yuan, J., W. Xie, H. Liu, J. Liu, H. Li, X. Wang, and W. Jiang, "High-power semi-insulating GaAs photoconductive semiconductor switch employing extrinsic photoconductivity," IEEE Trans. Plasma Sci., Vol. 37, No. 10, 1959-1963, Oct. 2009.
doi:10.1109/TPS.2009.2022013

20. European Standard "Connector for electronic equipment --- Tests measurements --- Part 25-7: Test 25g --- Impedance, reflection coe±cient and voltage standing wave ratio (VSWR),", NF EN 60512-25-7, Jun. 2005.

21. Blood Jr., W. R., ECL System Design Handbook, 45 & 48, Motorola Semiconductor Products, Inc., Phoenix, AZ , 1988.

22. Buchanan, J. E., BiCMOS/CMOS Systems Design, 109, McGraw-Hill, New York, 1991.