Vol. 46
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-06-17
Broadband Rectangular Waveguide to GCPW Transition
By
Progress In Electromagnetics Research Letters, Vol. 46, 107-112, 2014
Abstract
A broadband transition design between rectangular waveguide and GCPW is proposed and studied. The E-field of GCPW is designed to be gradually changed to that of waveguide via the simple tapered probes and metallic vias. The planar circuit of the transition is fabricated by low cost standard PCB process. The tolerance analysis for this transition is also given. A back-to-back transition prototype at Ka-band is fabricated and measured. The measurement results show that maximum insertion loss of 0.75 dB and return loss of better than 15 dB are obtained within a desired frequency range from 26.5 to 40 GHz. The measurement results agree well with simulation results, which validate the feasibility of this design.
Citation
Jun Dong, Tao Yang, Yu Liu, Ziqiang Yang, and Yi-Hong Zhou, "Broadband Rectangular Waveguide to GCPW Transition," Progress In Electromagnetics Research Letters, Vol. 46, 107-112, 2014.
doi:10.2528/PIERL14050907
References

1. Shigesawa, H., M. Tsjui, and A. A. Oliner, "Conductor-backed slot line and coplanar waveguide: Dangers and full-wave analyses," IEEE MTT-S Int. Microw. Symp. Dig., 199-202, 1988.

2. Tien, C.-C., C.-K. C. Tzuang, S.-T. Peng, and C.-C. Chang, "Transmission characteristics of finite-width conductor-backed coplanar waveguide," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 9, 1616-1623, 1993.
doi:10.1109/22.245687

3. Lee, J. J., K.-C. Eun, D. Y. Jung, and C.-S. Park, "A novel GCPW to rectangular waveguide transition for 60 GHz applications," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 2, 80-82, 2009.
doi:10.1109/LMWC.2008.2011316

4. Shih, Y.-C., "Broadband characterization of conductor-backed coplanar waveguide using accurate on-wafer measurement techniques," Microw. J., Vol. 34, No. 4, 95-105, 1991.

5. Lin, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB Vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503

6. Hung, C.-F., A.-S. Liu, C.-H. Chien, C.-L. Wang, and R.-B. Wu, "Bandwidth enhancement on waveguide transition to conductor backed CPW with high dielectric constant substrate," IEEE Microw. Guided Wave Lett., Vol. 15, No. 2, 128-130, 2005.

7. Vahidpour, M. and K. Sarabandi, "Ground coplanar waveguide to rectangular waveguide transition," IEEE Antennas and Propagation Society International Symposium, 2009 APSURSI, 1-5, 2009.
doi:10.1109/APS.2009.5172265

8. Aliakbarian, H., S. Radiom, V. Tavakol, P. Reynaert, B. Nauwelaers, G. A. E. Vandenbosch, and G. Gielen, "Fully micromachined W-band rectangular waveguide to grounded coplanar waveguide transition," IET Microwaves, Antennas & Propagation, Vol. 6, No. 5, 533-540, 2012.
doi:10.1049/iet-map.2011.0301

9. Flammia, I., A. Stohr, C. C. Leonhardt, J. Honecker, and A. G. Steffan, "71-76 GHz grounded CPW to WR-12 transition for quasi-hermetic RoF wireless transmitter," Electronics Letters, Vol. 48, No. 9, 506-508, 2012.
doi:10.1049/el.2012.0377