Vol. 49
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-09-12
A Modified Formula for Microwave Measurement of Dielectric Loss Using a Closed Cylindrical Cavity Dielectric Resonator
By
Progress In Electromagnetics Research Letters, Vol. 49, 39-44, 2014
Abstract
This paper provides a modified formula for calculating dielectric loss of dielectric resonator of working in TE01δ mode in closed cavity. The measurement system is divided into six regions with all electromagnetic field distributions given in each region. Based on analyzing the formula of loss tangent published in literatures, a quality factor of a substrate is created, and a modified formula is proposed. Validating the modified formula, with three substrates as supports, the frequencies and unloaded quality factors of dielectric resonators made of two sorts of dielectric materials with permittivity 38 and 75 respectively are measured using a closed cavity method. The measured results are compared with those obtained by other well-known formulas and show a good agreement with the result given by the parallel plate method.
Citation
Liangzu Cao, and Daming Cao, "A Modified Formula for Microwave Measurement of Dielectric Loss Using a Closed Cylindrical Cavity Dielectric Resonator," Progress In Electromagnetics Research Letters, Vol. 49, 39-44, 2014.
doi:10.2528/PIERL14071102
References

1. Fiedziuszko, S. J., I. C. Hunter, T. Itoh, et al. "Dielectric materials, devices, and circuits," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 3, 706-720, Mar. 2002.
doi:10.1109/22.989956

2. Sebastian, M. T., Dielectric Materials for Wireless Communications, Elsevier Ltd, USA, 2008.

3. Kajfezz, D. and P. Guillon, Dielectric Resonators, Noble Publishing Corporation, Tucker, Georgia, USA, 1998.

4. Sheen, J., "Comparisons of microwave dielectric property measurements by transmission/reflection techniques and resonance techniques," Meas. Sci. Technol., Vol. 20, 1-12, 2009.

5. Krupka, J., "Precise measurements of the complex permittivity of dielectric materials at microwave frequencies," Materials Chemistry and Physics, Vol. 79, 195-198, 2003.
doi:10.1016/S0254-0584(02)00257-2

6. Hakki, B. W. and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Trans. Microwave Theory Tech., Vol. 8, No. 7, 402-410, 1960.
doi:10.1109/TMTT.1960.1124749

7. Courtney, W. E., "Analysis and evaluation of a method of measuring complex permittivity and permeability of microwave materials," IEEE Trans. Microwave Theory Tech., Vol. 18, 476-485, 1970.
doi:10.1109/TMTT.1970.1127271

8. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 16, R1-R16, 2005.

9. Krupka, J., K. Derzakowski, B. Riddle, and J. B. Jarvis, "A dielectric resonator for measurements of complex permittivity of low loss materials as a function of temperature," Meas. Sci. Technol., Vol. 9, 1751-1756, 1998.
doi:10.1088/0957-0233/9/10/015

10. Cros, D. and P. Guillon, "Whispering gallery dielectric resonator modes for W-band devices," IEEE Microw. Theory Tech., Vol. 38, 1667-1674, 1990.
doi:10.1109/22.60014

11. Krupka, J., D. Cros, M. Aubourg, and P. Guillon, "Study of whispering gallery modes in anisotropic single crystal dielectric resonators," IEEE Trans. Microwave Theory Tech., Vol. 42, 56-61, 1994.
doi:10.1109/22.265528

12. Krupka, J., K. Derzakowski, A. Abramowicz, M. E. Tobar, and R. G. Geyer, "Whispering gallery modes for complex permittivity measurements of ultra low loss dielectric materials," IEEE Microw. Theory Tech., Vol. 47, 752-759, 1999.
doi:10.1109/22.769347

13. Prakash, A., J. K. Vaid, and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity perturbation technique," IEEE Trans. Microwave Theory Tech., Vol. 27, 791-795, 1979.
doi:10.1109/TMTT.1979.1129731

14. Kobsyashi, Y. and M. Katon, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 7, 586-592, 1985.
doi:10.1109/TMTT.1985.1133033

15. Cao, L. and D. Cao, "Fast measurement of complex permittivity of microwave dielectric materials using parallel short-circuit plate method," Journal of Ceramics, Vol. 33, No. 3, 80-84, 2012, in Chinese.

16. Bonetti, R. and A. Atia, "Design of cylindrical dielectric resonators in inhomogeneous media," IEEE Trans. Microwave Theory Tech., Vol. 29, No. 4, 323-326, 1981.
doi:10.1109/TMTT.1981.1130351

17. Itoh, T. and R. Rudokas, "New method for computing the resonant frequency of dielectric resonator," IEEE Trans. Microwave Theory Tech., Vol. 25, 52-54, 1977.
doi:10.1109/TMTT.1977.1129030

18. Maystre, D., P. Vincent, and J. C. Mage, "Theoretical and experimental study of the resonant frequency of a cylindrical dielectric resonator," IEEE Trans. Microwave Theory Tech., Vol. 31, 844-848, 1983.
doi:10.1109/TMTT.1983.1131616

19. Zaki, K. A. and A. Atia, "Modes in dielectric-loaded waveguides and resonators," IEEE Trans. Microwave Theory Tech., Vol. 31, 1039-1045, 1983.
doi:10.1109/TMTT.1983.1131658

20. Sheen, J., "Microwave measurements of dielectric properties using a closed cylindrical cavity dielectric resonator," IEEE DEI, Vol. 14, No. 15, 1139-1144, 2007.
doi:10.1109/TDEI.2007.4339473

21. Sheen, J., C. A. Chen, Y. H. Chen, et al. "Microwave measurements of dielectric properties — A further study to a new theoretical model for a closed cylindrical cavity dielectric resonator," IEEE DEI, Vol. 14, No. 12, 3874-3877, 2007.

22. Cao, L. and D. Cao, "Study of parameter Dielectric measurement of microwave dielectric materials by the closed cavity method," Electronic Components and Materials, Vol. 30, No. 12, 9-12, 2011, in Chinese.

23. Zhou, D., M. Hu, S. Jiang, et al. "Microwave measurement of dielectric properties of ceramics by the closed cavity resonator method," J. Huazhong University of Sci. & Tech. (Nature Science Edition), Vol. 32, No. 8, 50-53, 2004, in Chinese.

24. Ni, E., Measurement of Microwave Dielectric Resonator, People’s Posts and Telecommunications Press, Beijing, China, 2006.

25. Gu, J., Dielectric Resonator Microwave Circuit, People’s Posts and Telecommunications Press, Beijing, China, 1986.