Vol. 49
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-09-08
Compact Dual-Band Bandpass Filter Using Embedded Center-Grounded SIR and Open-Loop Resonators
By
Progress In Electromagnetics Research Letters, Vol. 49, 9-14, 2014
Abstract
In this article, a compact dual-band bandpass filter (BPF) using coupled open-loop resonators and an embedded center-grounded stepped-impedance resonator (CGSIR) is proposed. This filter operates at 2.1/5.2 GHz for WCDMA/WLAN applications. The first passband is generated by the proposed CGSIR, and the second one is created by the coupled open-loop resonators. Each passband can be controlled independently by adjusting the dimension parameters of corresponding resonators. Five transmission zeros (TZs) are generated due to the 0° feed structure and signal cancellation effects between electric couplings and magnetic couplings, which improve the filter band-to-band isolation level and skirt selectivity significantly. Moreover, the overall circuit size is very compact due to the embedded configuration. The measured filter performances are in good agreement with the simulated ones.
Citation
Jun Li, Shan Shan Huang, Hui Wang, and Jian Zhong Zhao, "Compact Dual-Band Bandpass Filter Using Embedded Center-Grounded SIR and Open-Loop Resonators," Progress In Electromagnetics Research Letters, Vol. 49, 9-14, 2014.
doi:10.2528/PIERL14072903
References

1. Zhang, S. and L. Zhu, "Synthesis design of dual-band bandpass filters with λ/4 stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 5, 1812-1819, May 2013.
doi:10.1109/TMTT.2013.2256143

2. Wei, X. B., Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, "Compact dual-band bandpass filter with improved stopband characteristics," Electron. Lett., Vol. 48, No. 12, 704-705, 2012.
doi:10.1049/el.2012.1107

3. Mohan, A. and A. Biswas, "Dualband bandpass filter using defected ground structure," Microw. Opt. Technol. Lett., Vol. 51, No. 2, 475-479, Feb. 2009.
doi:10.1002/mop.24067

4. Zhang, Z., et al. "Design of a compact dual-band bandpass filter using opposite hook-shaped resonator," IEEE Trans. Microw. Wireless Compon. Lett., Vol. 21, No. 7, 359-361, Jul. 2011.
doi:10.1109/LMWC.2011.2156777

5. Chang, Y. C., et al. "Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications," IEEE Trans. Microw. Wireless Compon. Lett., Vol. 19, No. 12, 780-782, Dec. 2009.
doi:10.1109/LMWC.2009.2033499

6. Li, J., S. S. Huang, and J. Z. Zhao, "Design of a compact and high selectivity tri-band bandpass filter using asymmetric stepped-impedance resonators (SIRs)," Progress In Electromagnetics Research Letters, Vol. 44, 81-86, 2014.
doi:10.2528/PIERL13112502

7. Luo, S. and L. Zhu, "A novel dual-mode dual-band bandpass filter based on a single ring resonator," IEEE Trans. Microw. Wireless Compon. Lett., Vol. 19, No. 8, 497-499, Aug. 2009.
doi:10.1109/LMWC.2009.2024826

8. Wang, J., et al. "High-selectivity dual-band stepped-impedance bandpass filter," Electron. Lett., Vol. 42, No. 9, 538-540, Sep. 2006.
doi:10.1049/el:20064491

9. Kuo, J. T., T. H. Yeh, and C. C. Yeh, "Design of microstrip bandpass filters with a dual-passband response," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1331-1337, Apr. 2005.
doi:10.1109/TMTT.2005.845765

10. Guo, L., Z.-Y. Yu, and L. Zhang, "Design of a dual-mode dual-band filter using stepped impedance resonators," Progress In Electromagnetics Research Letters, Vol. 14, 147-154, 2010.
doi:10.2528/PIERL10032601

11. Xu, J. and W. Wu, "Miniaturised dual-wideband bandpass filter using novel dual-band coupled-line sections," Electron. Lett., Vol. 49, No. 18, 1162-1163, Aug. 2013.
doi:10.1049/el.2013.1665

12. Chen, F.-C. and J. M. Qiu, "Third-order dual-band bandpass filter with controllable bandwidths using short stub-loaded resonators," Progress In Electromagnetics Research Letters, Vol. 32, 101-108, 2012.
doi:10.2528/PIERL12050105

13. Gao, L., J. Xiang, and Q. Xue, "Novel compact tri-band bandpass filter using multi-stub-loaded resonator," Progress In Electromagnetics Research C, Vol. 50, 139-145, 2014.
doi:10.2528/PIERC14041504